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0 Mathematical Aspects of the Quantum Theory 
of Fields 

By K. 0. FBIEDRICHS 

Part V. Fields Modified by Linear Homogeneous Fore* 

OO      22. Boson Fields under the Influence of Spring Forces 

In Part III we considered a boeon field caused by the presence of a source 
distribution. We found that the source distribution contributes a right member 
to the differential equations for the field quantity 2(x, t), making the equations 
non-homogeneous. In the present part we shall discuss the modifications of a 
field caused by forces which are linear in the field quantity Z; such forces will 
simply be called "spring forces." It is characteristic for this type of modifica- 
tion that the differential equation for the field quantity remains linear and 
homogeneous. The main result of this part is that the transformations needed 
to describe such modifications can be determined completely; in fact, they can 
be expressed explicitly in terms of the solution of the corresponding unquan taxed 
problem. 

In the first sections of the present part we shall be concerned with boson 
fields, but in Section 28 we shall discuss similar problems for fermion fields, 
specifically, for fields of electrons and positrons endowed with Dirac's energy. 
Particular attention will be given to the problem of "vacuum polarisation". 

The boson field g to be considered in the present section will be described 
by a field quantity or potential E which is a function H(x, 0 of the position x 
and the time t and satisfies the differential equation 

(22.1) (V? - V: + M*)E + QTZ - 0. 

The symbol Q* signifies a functional operator which acts on functions of x; it 
will be referred to as the "disturbance operator". The term—Q" H(x, 0 repre- 
sents the force per unit mass exerted on the field at the point z at the time L 

The initial conditions for the solution S(i, 0 of equation (22.1) are the 
same as those for the undisturbed field, cf. (2.1), 

[V.S^, 0), Six", 0)] - -iK** - *"), 

(22.2) [E(*',0),S(x",0)]»0, 

[V.ZCr', 0), V.£(x", 0)1-0. 

The field g may be an electromagnetic or a neutral meson field.  However, 
l 
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it may also be an elastic medium provided the density and the elastic constants 
involved are taken equal to unity. In the following we usually refer to this 
interpretation. In an elastic medium, the quantity H stands for the displace- 
ment or elongation. The position variable x may range either over the whole 
or a part of three-, two-, or one-dimensional space; if its range is only a part 
of one of these spaces, appropriate boundary conditions must be imposed on the 
functions of x on which the operator VI acts. 

Adjoint and Conjugate Operators 

Before formulating conditions on the disturbance operator Q we note that 
the notions of "real" adjointness and "real" symmetry will often be used instead 
of Hermitian adjointness and symmetry; also we shall assign to each operator a 
"complex conjugate". These notions are defined only with respect to a functional 
representation; we shall usethe x-represeutation for this purpose. 

The complex conjugate A of an operator A is denned by the condition that 
its x-representer A* transforms a function ^(i) into the complex conjugate of 
the function A* f (x), 

(223) A'Hx) - A'tfx). 

Here we assume that A* is applicable to f(x) if it is applicable to ^(z). The 
real adjoint will be defined for operators A which have a Hermitian adjoint. 
Using the notation1 'A for the real adjoint and A* for the Hermitian adjoint we 
define 

(22.4) 'A » A*. 

Accordingly, 

(22.5) / fA'«x).*(,,(x) dx - / «z)A'f"(z) dx 

whenever A" is applicable to ^-(x), 4^x), f(l) (x). If 'A — A, we say that A is 
real symmetric. If A = A and 'A — A, and hence *A = A, we say that A is real 
and symmetric. 

We now require that the disturbance operator Q be real and symmetric. 
More specific conditions on the nature of Q will be formulated later, see Section 
26; but at present we may visualise Q" as an integral operator, with a real and 
symmetric kernel q(x, x'), 

(22.6) QMx) - / q(xt xOtfxO d£. 

The force expressed by the term — QV(x) may be interpreted as the force due to a 
distribution of springs, connecting the points x' with the points x, the kernel 
q(x, x') being the density of the spring constant. 

•Our notations differ from those customary in work on quantum physics. 
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Various Types of Problems 

A number of generalizations of this problem may be treated in the same 
manner. These generalizations result from modification of the independent 
variable x, the differential dx, and the operator pJ — V' . These modifications 
could in fact be subsumed under our theory by re-interpreting the terms x, dx, 
p* — V* in an appropriate way. 

One particularly interesting generalization is concerned with the interaction 
between several media; for example, between two two-dimensional membranes 
or two one-dimensional strings. In order to include such cases in our theory 
it is necessary to introduce instead of x a more general independent variable; 
we shall use the pair (x, p) in which p is a label running over the values I, • • • , r if 
r fields are considered.   The integral / | f (x) |* dx is to be replaced by 

Both the domain of integration and the rest mass p may be different for each 
field. The term p in (22.1) is accordingly to be replaced by p' and the operator 
Q" by Qr'; this operator then incorporates the interaction between the various 
media. 

Finally, cases in which masses are concentrated on two-, or one-dimensional 
manifolds or at single points may also be subsumed under the theory. In such 
cases the differential dm(x) of an appropriate measure function must be substi- 
tuted for dx and an appropriate undisturbed energy operator must be adopted 
in place of p* — Vj. 

For example, we may consider two "media", one extending over the whole 
space, the other concentrated at the point x «= 0. The field quantity S(x, p) is 
then defined for all values of x when p — 1 but only for x — 0 if p = 2. Instead 
of S(x, p) we may use a pair {S(x), So} to describe the field, letting S(x) - 
2(x, 1) refer to p « 1 and So — S(0, 2) refer to p — 2. As the unit form for 
any pair {^(x), ^0} we may choose 

/ 
«z) |' dx + | *. |\ 

The mass concentrated at the point x — 0 will be denoted by m but we assume 
that the rest mass of the extended field vanishes so that (O*)* •» — Vj for this 
field. The corresponding term for the point mass is assumed to be of the form 
Si = Co where Co is the constant of the spring which connects this mass with a 
support. 

We suppose that the interaction of the extended field with the single mass 
is provided by springs with the density q(x). Therefore, the interaction operator 
Q"'' transforms any pair {^(x), ^0) into the pair 

vim, *>} - {<Kx)*0, / «(»)*(*) <**}• 
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Evidently, this operator is real and symmetric. 
Instead of (22.1) the differential equation becomes 

(V! - VDS + g(x)2o - 0, 

mViZ, + / «(*)£(*) dx - 0; 

and instead of (22.2) the initial conditions are 

V.tfx', 0)-£(z", 0) - 2(x", 0)V,S(x', 0) - -t«(x/ - *"), 

mVi^o-Ho — SomV,So • —». 

A special case of this problem is treated in the thesis of W. SoUfrey [50], 
namely the case in which the mass interacts with the medium only through a 
single (pring attached to the point x — 0.   Here 

qix) - elS(x), 

if c, is the constant of the single spring. This point interaction makes the 
operator Q* so singular that our treatment is not applicable. On the other hand, 
our treatment will explain the occurrence of infinities found by SoUfrey. 

Modified and Unmodified Particle Representation 

Instead of describing the field by means of the quantity H(x, 0 we may 
describe it in terms of particles.   With the aid of the energy operator 

(22.7) 0" - [M* - V!F" 

we introduce the creation and annihilation operators 

(22.8) A'(x, 0 - (072)"*S(*, 0 =F ipff^V.afo 0, 

the number operator 

(22.9) N(Q- f A*{x,QA-(x,()dx, 

and the energy operator 

(22.10) HA({) - f A\x, QQTA-(x, 0 dx, 

see (9.5), (10.8), (10.9). 
In order to justify the designation of A*(x, 0 as creation and annihilation 

operators it is necessary to show that they satisfy the appropriate commutation 
lawe and, furthermore, that a particle representation 

(22.11) * «- {*.(4.(0} 

of the states of the field is associated with them. 
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The main object of our investigation is to determine the transition prob- 
ability, i.e. the probability of finding n particles at the time t, or as t —•», if no 
particles were present at the time t — 0. 

Neither the number operator N, nor the energy operator HA is constant in 
time. However, the sum of the energy operator HA(t) and the interaction 
operator V(t), the total energy operator 

(22.12) HM - H„(0 + F(0, 

is constant.  The interaction operator V(t) is given by 

F(0 - \ f S(x, tyrzix, t) dx 
(22.13) 

mlj [A*(t, 0 + A-(x, 0J(Or,/,Q'(ar,/W*, 0 + A~(x, 0] dx. 

The constancy of the operator #Ml is easily verified formally from the differ- 
ential equations (21.1). 

Whether or not the operator V(t) is defined depends on the nature of the 
operator Q. It could be shown that V(t) can be defined if G~"* Q Q~in is an 
integral operator with a quadratically integrable kernel. Since we shall not 
actually work with the operator V(t) no details will be given. 

Modified Energy Operator for Single Particlee 

It is our aim to introduce a "modified" particle representation of the states 
of the field such that #„, is the associated energy operator except for an additive 
constant. 

The modified particles are endowed with an energy operator which differs 
from the energy operator 0" associated with the unmodified particles. The 
simplest way to determine the proper expression of the modified particle energy 
operator is to compare the unmodified and modified field energy operators in 
the improper forms 

and 
\j [V,2* + S(M* - VDS] dx 

\ f [(V.S)* + E(M* - Vi)E + SQ-H] dx. 

Clearly, the second expression is of the same form as the first, but we have 

(22.16) r - (M* - v: + <n,/t 

in place of C - 0»* - Vj)1", see (22.7). This operator T is defined if the 
operator p* — V. + Q" is non-negative; if it is positive definite, the inverse 
T"1 of T is defined. We assume that the disturbance Q is such that this is the 
case. 



6 K. O. FRIEDRICHS 

Wc suppose that the spectral representation of the operator T is "known". 
We may then consider all functions of ft and T as known. At the beginning of 
this part we stated that our problem can be solved explicitly; this statement can 
now be made specific: we shall solve our problem explicitly in terms of the opera- 
tore Q and T. 

Employing the operator T we can interpret our problem with reference to the 
single particles of which we may consider the field to be composed. Instead of 
saying that forces are exerted on the field we may say that forces act on the 
single particles. Instead of describing this force explicitly it is sufficient to 
describe the potential energy associated with it. The operator which corresponds 
to this potential energy is simply the difference T — 9, We may also say that 
the disturbance is such that T has replaced ft as energy operator. 

Modified Creation and Annihilation Operator* 

In terms of the modified energy operator T we may introduce "modified" 
creation and annihilation operators by 

(22.15) B"(x, t) - {T/2)ulZ{x, t) =F t(2r)"l/,V,2(x, 0; 

the associated "modified" number operator is 

(22.16) M - f B*(x, t)B~(x, t) dx 

and the "modified" energy operator is 

(22.17) H. -  [ B\x, t)rB-(x, ') dx.      . 

The differential equation (22.1) for the operators E leads to the equation 

(22.18) V,5*(x, 0 - ±iTB*{x, t) 

for the operators B".   Evidently the solution is 

(22.19) B'(x, t) = exp ,<=bt*r}B*(x, 0), 

provided that the initial values Bm(x, 0) are given. 
Of course, it is assumed that these initial values obey the commutation 

laws; it then follows that the B'(x, t) also obey these laws. 
The constancy of M and Hs is an immediate consequence of (22.19). 
We may now express the solution S(i. t) of equation (22.1) in terms of the 

initial data E(x, 0), V,S(x, 0) by inverting relation (22.15) on the assumption 
that this relation holds initially. It can then be verified that S(x, t) and 
V,S(x, t) obey the commutation laws for each value of t. 

With the aid of (22.8) we can finally express the operators A'(x, t) in terms 
of their initial values. One then easily verifies that these operators obey the 
commutation laws. 
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It is necessary to express the operators A " directly in terms of the operators 
B".   Eliminating £ and V, 2 from relations (22.15) and (22.9) we find first 

B\x, t) + B-(X, 0 - (T'-'n-^rM-d, o + A-(x, 01, 
(22.20) 

£T(x, 0 - B-(x, t) - <T-,/,tf'W(*, 0 " A-(x, 01, 

and consequently, 

(22.21) fi*(x, 0 - K.M*(x, 0 + Y'.A'ix, t), 

if we introduce the operators Y~ by 

(22.22) 2K. =• T,/,Q_,/' ± T-'^O1". 

introducing the cperatoru Z. by 

(22.23) 2Z. - Q«'*T-"S ± Q-,/,T,/,
> 

we have inversely 

(22.24) A\x, 0 = Z:B'(x, t) + ZlB'(x, t). 

Note that the modified and unmodified creation and annihilation operators 
are related by linear homogeneous relations; this will be the starting point of 
our procedure in determining the modified particle representation. 

Remarks About Energy Operators 

At present we add a few remarks concerning the relationship between the 
energy operators H, and //,.,, see (22.17) and (22.12).  Inserting the expressions 
(22.24) into (22.12) and using the commutation laws we find 

(22.25) Htat » HB + h. 

The term h is an integral which can be written in the form 

h = 11 [A-(x)J'A*(x) - A*(x)J'A-(x)} dx 

when the operator J is defined by 

J = 7+ + J. , 

J. = 0*,/2[T - Q]Q-!/\ 

Suppose now the operators Jl are integral operators with kernels jm {x',x") 
which possess finite traces 

TrJ***j j-(x, x) dx. 

Then we find 

h = J 7V /• + 1 TV /_ . 
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We may give this expression a different form by using the fact that Tr AB — 
Tr BA for any two operators. Supposing that the operator T — 0 possesses a 
trace we have 

7V 7. - Tr Q*ut(Q9WtJ) 

- Tr (Qml"J)Q'l/t - 7V(T - 0); 
hence 

(22.26) A-iTY(T-Q). 

The condition that this trace must be finite involves a severe restriction on the 
nature of the operator Q - T3 — 0*. Closely related conditions on the dis- 
turbance Q will be formulated in Section 26. 

Modified Particle Representation 

Our main objective is to determine the particle representation (22.13) 

(22.27) * «- {*.(*).(*) J 

associated with the operators A" (x, t) if the representation of the state is given 
for the initial time i — 0.  To this end we use the modified particle representation 

* «-  {x»(x-)(0). 
mm 

In analogy with the procedure described in Part III, cf. (14.10), we de- 
termine a transformation Ty and its inverse T% which transform the functions 
^-(x).(0 and Xm(x)m(t) into each other, 

x-(*).(«> - TtU'UQ, 
(22.28) 

*.«.(*) - r&.(«).(0. 
Suppose the transformations T" , T% are known. Then we may obtain 

X.(*)-(0) from 

x.(x).(0) - T2Ux)uWl 
furthermore, 

X-(*)-(0 - exp {-itHB)Xm(x)m(0) 

from (22.19), and finally 

*.(x)„«) * r£x.(x).(fl. 

Combining these formulas we find 

(22.29) *.(x).(0 - T% exp [ -.W.^^iO). 

The transition probabilities can then be calculated. 
The transformation (22.8) will also be determined directly, without reference 

to modified particles as intermediaries. 
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Canonical Transformations 

As in Part III we shall derive the transformation T with the aid of a canoni- 
cal transformation, see Section 14. We introduce the "trivial" transformation 
1% which transforms the Af-representers x*Ct). of any state * into the AT- 
representers 

x.(*). - //*«(*)• 

of that state •' whose tf-representers happen to be the same functions as the 
Af-representers of *, cf. (14.17). We wish to find the unituy transformation T 
which transforms the state • into the states *'. 

(22.30) 7** ~ *'. 

Let T" be the AT-repreaenter of the operator T; then the Af-represeiiters of the 
state • •» T"1 ** are given by 

(22.31) *.(*), - /#"*.(*). 

in terms of the Af-representers of •. In other words, the desired transformation 
of the AT-representers into the Af-representers of a state # is given by 

(2232) TZ - IZT", 

cf. (14.22). Our problem has thus been reduced to the determination of the 
unitary operator T. 

The transformation of the modified vacuum state *?., into the modified 
vacuum state •?« is of particular interest. Since the AT-representers of *?.. are 
the same as the Jf-representers of *?. e , namely, {1, 0, 0, • • •}, it is clear from 
(22.30) that these states are related by 

(2233) *i. =» r*'.. 

In fact, the knowledge of the transformation of *?.. into *• expressed in terms 
of the creation operators B* would already enable one to construct the general 
transformation of M- into AT-representers. It is, however, much simpler to 
give the complete transformation T directly. 

As in Section 14, we shall characterize the operator T, without reference to 
repreaenters. by the condition 

(22.34) A'{x')T = rfl*(zO 

cf. (14.21). We shall determine the unitary operator T so that it satisfies this 
condition and define the representere .x«(x)„ of a state • by (22.31). It is clear 
that the operators B"(z) are exactly the creation and annihilation operators 
associated with the representation of * in terms of these functions x«(*)« • 
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23. General Homogenous Linear Transformation of Creation 
and Annihilation Operators 

Our procedure for determining a unitary operator T which satisfies relation 
(22.35) will be developed quite generally under the assumption that the operators 
B" and A' are connected by any homogeneous linear transformation which 
guarantees that the operators B* and B~ are conjugate to each other and obey 
the commutation laws provided the operators A* and A~ have these properties. 
Relation (22.21) is just a special case of such a transformation. In fact, we 
shall develop our procedure simultaneously for fermion and boson annihilation 
and creation operators. 

We shaii .al&o adopt a general quantum variable « with a measure differ- 
ential dm(«) instead of z and dx. 

It is convenient to consider the pair of operators A"(») as one entity 

(23.1) a(«) - {A-(S),A\B)\; 

more Generally, to a pair of functions tT(«) in $, i.e., to a pair of quadratically 
integrable functions, we assign the '"pseudo-function" 

(23.2) v(3) - {»-(.), *•(.)). 

To two such pseudo-functions, v(s) and w(«), we assign the "pseudo-product" 

(23.3) wov - f [tf*(«)«T(«) T »-(«>*(«)] dm®. 

Henceforth the upper sign is to be uaed i? the operators A" refer to a boson field, 
the lower sign if the A" refer to a fermion field.   Evidently, 

(23.3)' v o tc = =F(w o ») 

We also use commutators and anticommutators 

(23.4) [A, ; A,] = A,A, ^ A,A, 

in connection witn boson and fermion fields respectively (the semicolon is used 
in order to make it unnecessary to indicate the anticommutator by a special 
subscript). 

With the aid of functions v" and w" belonging to appropriate subspaces of $ 
we may form the field operators* tc o a and a o v; c.f. (8.5), (8.13). One readily 
verifies that the commutation laws (8.16). (8.20) and (8.16)*, (8.20)* are 
equivalent with the validity of the relatio.i 

(23.5) [u; <J 01; 0t o v] •» w ° v 

or 

(23.5)' [a o w; v o a] - to o p 

for arbitrary pseudo-functions v and to. 

•A field operator acts on states of the field.  We shall use this term whenever it is desirable 
to distinguish such operators from the "operators" which act on states of single particles. 
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With the aid of four bounded operators Li» acting on functions in $ we 
form the "pseudo-operator" 

(23.6) £ 
(Li.       LtA 

\LU      L'J 
which transforms the pseudo-function v(s) into the pseudo-function 

(23.7) £fy«) « {L?.«-(•) -I- Ll.v*(s), L:_V-(») + L!,i*(«)J. 

We write the pseudo-product of w(s) and £f vis) as to o £, v, omitting the super- 
script S; in fact, we uhall omit this superscript whenever possible without in- 
consistency. To a pseudo-operator £ we assign its "ps-udo-adjoini" '£ by the 
condition 

(23.8) £ir o v - u> o '£v. 

Evidently, 

(23.9) '£a 

\=F'L?_ 'Lf_/ 

Here the operators 'Li. are the real adjoints of the operators Ll. .   To ap- 
propriate functions /(X) we may assign the pseudo-operators /(£); clearly 

(23.10) '/(£) - /('£)• 

To the pair of pseudo-operators £, 3R we may assign the commutator [£, 3TC]. 
Note that the symbol f, ] indicates the proper commutator 

(23.11) [£, 9TI] - £DTl - 3TC£. 

Evidently, 

(23.12) '[£,311] = -('£, ;rc] 

A pseudo-operator <P will be cal'ed "pseudo-antisymnictric" if 

(23.13) '<P = -<P, 

i.e. if 

(23.14), 'P*+ - -P__ ,       'P„ - -P„ , 

(23.14), 'P- - ±P- ,       'P- - ±P- . 

One important fact about pseudo-antisymmetric operators is that the com' 
mutator [<F,, <P,] of two such operators is also pseudo-antisymmetric. From relation 
(23.10) it can be inferred, moreover, that the matrix exp (P has the property 

(23.15) '(exp <P) = (exp (P)"1 

if (P is pseudo-antisymmetric. 
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We shall frequently impose an additional condition on the pseudo-operators 
£,, namely 

(23.16) I,., - L_,.-, . 

Here a and r stand for the labels + or —, and L is the complex conjugate of L. 
Pseudo-operators £ whose components satisfy condition (23.16) will be called 
"pseudo-hermitian." If a pseudo-operator £ is speudo-hermitian ever' real 
function of £ is also pseudo-hermitian. 

We now assume that a linear transformation of the "unmodified" annihila- 
tion and creation operators a — [A~(x), 4*(x)| into modified operators (B - 
[B~(x), B*{z)) of the form 

(23.17) (B - 'Jja 

is given, such (hat the pseudo-operator y is pseudo-hertuitian and s&tidHec the 
condition 

(23.18) «JJ'«U - 'y\j - 1 

or 

(23.18)' *y - «jr'. 

By assumption, the hermitian adjoint of the operator A' is (A*)* • A.'*. 
Hence the hermitian adjoint of the operator B* — Y,.-A~ + Y,..A* is (£*)* • 
Y.,.A* + Y,..A~ - Y....A- + Y....A* - B". Thus the pseudo-hermitian 
character of *JJ insures that the operators B"(x) are hermitian adjoint* of each other. 

We also maintain that condition (23 18), imposed on the pseudo-operator 
% insures that the operator* B"(z) aattify the commutation laws if, as assumed, 
the operators A'(x) do.   In fact, from (23.8), (23.5), and (23.18) we deduce 

[u> o <B; (B o v] - [*Uw o Q; Q o '<&>] - "Utc o "jjp = w o «\,*JJe 

and therefore relation [tc o ffl; a o p] — toor; which is equivalent to the commuta- 
tion laws. 

Suppose a pseudo-antisymmetric pt>rud»-hermitian operator (R exists b.ich 
that 

(23.19) «y - exp <R. 

Then *u. is also pseudo-hermitian and we conclude that in relation (23.15) the 
operator <y — exp <R satisfies the condition y"y •» 1, cf. (23.18). In the following 
we assume that 'y is of this fcrm. 

The canonical transformation T will first be described in terms of the 
pseudo-operator <R. Eventually, however, we shall describe this transforma- 
tion in different ways independently of the assumption that the pseudo-operator 
<R exists. Incidentally, for fermion fields the existence of the pseudo-operator 
(R is always certain since in this case the pseudo-operator *y is unitary. 

The transformation (23.15) of operators A" into operators B", connected 

x 
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with the modification of a boson field under the influence of spring forces, is of 
the form (23.17) with a pseudo-operator 

-C: ::) (23.20) 

whose components are given by 

r„ - r„ - Y. - jiT^a-" + T-
,/,

Q
,/
'], 

(23.21) 
Y.. - 1'- ••= Y. - \[rulQ-ut - T-1/,Q,/,], 

according to (23.16).   Clearly, this pseudo-operator y satisfies condition (23.16) 
since T and Q are real.   Also, the pseudo-adjoint "y of 01 is given by 

(23.20)' 

with 

,-f   Z) 
\Z.       Zj 

z. - i[n-,/2T,/t + Q
,/,

T-
,/,

J 
(23.21)' 

Z_ - i[0-,/,T!/, - Q,/,T-,/t]. 

As seen from (22.23), the operator '<y is the inverse of % so that condition 
(23.18)' is satisfied. It is not obvious, though, whether or not this pseudo- 
operator ^ is of the form *xj » exp (R. In constructing the canonical transforma- 
tion T we shall at first assume that it is, but this assumption will be eventually 
discarded; for, we shall be able to verify the correctness of the final expression of 
T independently. 

P$eudo-biquantized Operator* 

Our procedure for finding a canonical transformation T explicitly makes 
extensive use of certain field operators [(?] which are assigned to pseudo-anti- 
symmetric pseudo-operators <P by the formula 

[<P] «= ia o <PG 

- IA*P-A- + \A+P..A* T \A-P.-A~ == \A~P„A* 
(23.22) 

- \ j A\$)PLA-(») dm(») + i / A\*)PUA\,) dtn($) 

T ft f A-($)Pt.A-(s) dm(t) =F * f A-(»)PUA*(9) dm(>). 

This assignment, which is a basic tool in the following investigations, will be 
studied in detail.   It is analogous to the assignment of the biquantized operator 
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A*PA~ to the single particle operator P. We shall, therefore, caU the operator 
[<P] "pscudi>-biquantized". For this assignment we are using the same bracket 
notation we used for the proper biquantized operator cf. (6.35); no confusion is to 
be expected. 

The pseudo-biquantized operator [<?] is not defined for arbitrary pseudo- 
antisymmetric pseudo-operatore (P; the terms P.. of this pseudo-operator must 
satisfy appropriate conditions. The term A*P-.A~, the first contribution to 
2[<P], is the biquantization of P__ ; hence it is defined whenever P__ is. The 
last term T-A~P++A*, however, differs from the biquantization of P** by the 
trace of TP,» , 

(23 23) WA~P„A* = A*P+.A~ =F TrP.. , 

cf. Section 10. If Pi• is an integral operator with the kernel P**(«', «"), the 
trace TrP.* , provided it exists, can be expressed as 

(23.24) Tr P.. = f P„(«, «) dm(s). 

The trace does exist if 

(23.25) f | P„(8, s) | dm(s) < « ; 

this condition evidently implies a severe restriction on the operator P«., . From 
the expression (23.24) we infer that the trace of the operator P++ equals that of 
its transposed 'P** , 

(23.26) TrP„- Tr'P... 

Since 'P** «- — P__ in virtue of the pseudo-antisymmetry of <P, cf. (23.14) 
the contribution (23.23) can also be written as 

(23.27) ^FA'P.+A* = A*P..A~ ± 7VP__ . 

We take the liberty of calling an operator A "traceable" if its trace exists; 
we shall call it "s^y iare traceable" if the trace of the operator A*A exists. If A 
is square traceable its a-representer A* is an integral operator with a kernel 
Af/, «") for which 

(23.28) Tr A* A - ff | A(«', «") |* dm(«') dm(s"). 

Evidently, 

(23.29) Tr AA* - 7V A*A. 

The contribution A~P+~A~ to the field operator *>[G>] is defined if Pf_ is 
an integral operator with a kernel P*~(s', a") for which 

(23-30X // | P-(«\ «") |" dmW) dm{s") < ». 
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This condition can now be expressed by saying that the operator P+_ should 
be square traceable. Clearly, the operator A~P+.A~ transforms the two particle 
state •, with the representer ^,(«,»«i) into the vacuum state with the representer 
*o - \/2 // P•_(«', s") *,(«', a") dm(s') dm(s"), and this term is finite if con- 
dition (23.30), is satisfied. One immediately verifies that under this condition 
the operator A~P+.A~ is applicable to every n-partirle state. To be sure, 
condition (23.26) is more severe than necessary. On the other hand, the opera- 
tors P«._ (which will occur in the following) will be closely connected with the 
operators P_* , and the condition 

(23.30), jf | P-(«', «") i1 dm(8') rfm(«") < « 

must be imposed on the kernel P-*{s', s") of the operators P_+ ; i.e. the operators 
P_+ must be square traceable. In fact, the operator A'P-.A* transforms the 
vacuum state with the representer +0 ~ 1 into the two particle state with the 
representer 

*,(*i ,x2) = V2P-*(s, , s,) 

and this state exists only if condition (23.29) is satisfied. However, it is easily 
verified that this condition is sufficient to insure that the operator A*P.+A* be 
applicable on everv n-particle state. 

We note that actually only the symmetric parts of P*_ and P_* contribute 
to the operator [(?] in case of a boson field, and only the antisymmetric parts in 
case of a fermion field; but for pseudo-antisymmetric pseudo-operators (P the 
operators P*_ and P_* are symmetric—or antisymmetric—see (23.14),. 

Under the conditions imposed the field operator [<P] can be applied to at 
least all states • which admit the number operator N = A*A~, see (10.8). For, 
as would not be difficult to show, u constant y can be found such that the in- 
equality 

(23.31) HOT* II <Tll(-V + 2)*|| 

holds for all such states •. By the process of closure the field operator [<P] can 
be extended into a domain $» in which it is closed. 

If the pseudo-operator (R is pseudo-hermitian, in addition to being pseudo- 
antisymmetric, the field operator [(R] t* antihermitian, i.e., 

(23.32) [«]• = -1<R]. 

For, the hermitian adjoin ts of A*R—A~, A*Rr^A*, lrA~R+„A~, Ti4 "ft ••_/!* are 
respectively A*'R^A~ j> -A*R..A~, A~'R..A~ = ±A~R; A~t qM*7?*-.A* 
= -A*R..A*, TA~'R+.A* = ±A~R„A*. Moreover, the operator »[<R] t« 
hypermaximal (or self-adjoint) in the space $« as could be readily shown. 

First Commutator Identity 

The justification of the first form of the canonical transformation, which 
we shall now set up, will be derived from the evaluation of the commutator of 
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the two field operators cofl and (<P] — \ Q, o <pa. This—proper—commuta- 
tor is given by the identity 

(23.33) [w o a, [<P]] - to o (pa 

and is understood to hold when both sides are applied on a state which admits 
the operators w o a [<P] and [(?} w o a; note that every state which admits the 
operator N "*/N has this property. Symbolically, we may write identity (23.33) 
in the form 

(23.34) [a, [<P]] - (Pa. 

In order to prove identity v'23 c3) we fi*3t employ identity (23.5) obtaining 

(u> o aXct o <pa) - ±a o (u> o a)<pa + u> c <pa; 

next we employ relations (23.3)' and (23.5)' obtaining 

±a o (to c a)(?a - -a o (a o w)6>a 

« -'<pa o(a ow)a 

» =F('<pa oa)(a ow) - too'<pa 

- (a o <pa)(u> o a) — tc o '<pa. 

Addition of the two formulas yields 

[w o a, (a o (pa)] = u\> ° (<P - '<p)a 

whence (23.33) because of '(P - - <P. 

Exponential Function of Pseudo-biquanlued Operators 

The desired canonical transformation will be given with the aid of the expo- 
nential function exp [<P] of pseudo-biquantized operator* [<?} If the operator [<P] 
is pseudo-hermitian so that t [<P] is hypermaximal, the function exp [<P] is defined 
as a unitary operator according to the theory of hypermaximal operators, cf. 119], 
[25]. In order to define the operator exp [<P] without assuming that [<P] is pseudo- 
hermitian one may expand the exponential function in a power series and apply 
it first to states *' with only a finite number of components in the particle repre- 
sentation. The resulting sequence of components does not necessarily define a 
state •''•' «= exp [<P] •' with a finite norm. This will be clear from results obtained 
later on, cf. (24.47), (24.48), in connection with the case in which only the term 
P_* is different from zero, so that [<P] involves only creation operators. It can 
be shown, however, that the series exp [<P] is applicable on states •' provided the 
norms of the operators P.. are small enough. The norm || P || of an operator P 
acting on states * of a single particle is the smallest number p such that the 
inequality || P* || < p || * || holds for all states *. After the operator exp [<P] 
has been defined for the states +' it can be extended by the process of closure to a 
dense subset of the Hilbert space of all states *. 
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The subsequent operations involving operators of the form exp [<P] could he 
justified—unless other-rise stated—provided the norms of the operators P.. ate 
small enough. It remains to justify these operations assuming only that the 
operators exp [<Pj involved are defined. 

First Similarity Rule, First Form of the Operator T 

For the field operator exp [<P] formed with the /id of the pseudo-biquantired 
operator [<P] we can form the field operator exp [<Pj. For this operator we shall 
establish the identity 

(23 35) exp [-<P](tc o a) exp [<P] » u> o (exp 0»)a, 

valid for arbitrary functions u»(»). Since the left member of this formula repre- 
sent? a similarity transformation of the field operator (wofl)we call tbi-3 formula 
the first "similarity rule." Symbolically, identity (23.35) may be written in the 
form 

(23.36) exp [-(P]a exp [3>] - (exp <P)0. 

If we specify (P as the pseudo-operator <R for which (exp <R) Gt - (B in accordance 
with (23.19), (23.17), we realise from (23.36) that the field operator 

(23.37) 7, - exp l(R] = exp §a o flta 

satisfies the relation 

(23.38) ar, - T&, 

which is the same as (22.34). Since the field operator (<R] is anti-hermitian, cf. 
(23.32), the field operator T is unitary and can be extended to the whole Hilbert 
space $. Thus we see that the field operator T, — exp [<R] gives the desired 
canonical transformation. 

We consider the field operator 

7(0 - exp [U?)w o (exp V9)a exp [-UP], 

and compute its derivative with respect to t formally; we obtain 

exp[-«P]/'(0 exp [M>] 

— [<P\w o exp (W>)a + wo (exp *<P)<Pa — to o (exp W)Q.[<9) 

- exp (W>){«T/ o <pa - [(u/ o a), [<?]}) 

with w' — (exp I '<P)w. According to identity (23.33), the operator in the curly 
brackets vanishes. Hence /'(<) — 0 and therefore 7(0 •» 7(0). Since, evi- 
dently, 7(0) = w o a the relation 7(0 = w o a is established. 

24. E-Ordering of the Canonical Transformation 

Specific information about the effects of the canonical transformation T 
cannot be derived directly from the expression exp § a o (Re for this transforms- 
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tion, see (23.37); for, creation and annihilation operators are still "interlocked" 
in this expression. The separation of these two types of operators will be per- 
formed in this section and various conclusions about the character of the trans- 
formation T will be drawn. 

We shall use canonical transformations of the form 

(24.1) T m exp [<Pt] exp [(P.] • • • e*n [<P„] 

with appropriate pseudo-antisymmetric operators (P, , (P, , (P» , • • • . As an 
immediate consequence of the first similarity rule (23.36) we observe that for 
suc!i a transformation the formula 

(24.2) T-'QT - exp <P, exp <P, • • • expi<P. a 

holds. In order to cusure that the transformation T satisfies the desired con- 
d'.tion 

(24.3) T^'ar « «ya = (B 

it is, therefore, sufficient to ensure that the pseudo-operators (Pt , <Pt , • • • , (P. , 
satisfy the relation 

(24.4) exp (P, exp <P, • • • exp <P« = «y;. 

Special efforts, on the other hand, are needed to show that the operator T is 
unitary. 

Second Commutator Identity 

In deriving the decomposition (24.1) we shall use the identity 

(24.5) [[<?,], [<P,]] - [«P, , <p,H 

which expresses the fact that the commutator of two pseudo-biquarUued operators 
ts the pseudo-biquanlizatum of their commutator. This identity may also be 
written in the form 

(24.5), [a o (p,a, a o <p2a] = 2a o [<p,, <p2]a. 

Of course, the identity is meant to be valid when applied to a state which admits 
the operators [51,] [<P,], [<Paj [<p,], and [[(P, , (P,l). 

Identity (24.5) can be verified by deriving three identities from the first 
commutator identity (23.33): first 

(a o <p,a)[<p,) = ('<p,a o a)[(p,] 

= ('<p,a o [fl>,]a) + '(p,a o <p,a, 
then 

('(P,a o (<p,]a) = (a o [(p.jff.a) 

= [<p»](a o (p,a) + <?,a o <p,a, 
and finally, by addition, 

[(« o <p,a), [<p,]] = a o (<p,(p, + '(p^oa; 
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thus (24.5) follows because of '<9t « — <P,. (Incidentally, the ielation '<P, » — <PX 

has not been used here.) 
Composition Rule 

Our process of decomposition will be derived from the following fact: Let 
&i » 0*i i <Pia &c tkree pseudo-antisymmetric pseudo-operators which satisfy the 
relation 

(24.6) exp (P, exp <P, = exp <P„ ; 

then the corresponding pseudo-biquantized operators satisfy the corresponding 
relation 

(24.7) exp [<?,] exp [<P,] «» exp {& 2]. 

This formula will be referral to as the composition rule for pse^ido-biquantized 
ojterators. We have hoi. beer, able to obtain a complete proof for this rule; xve 
are, therefore, forced to use it only heuristically. The second form of the canoni- 
cal transformation T which we shall derive trom it can, however, be verified 
independently. 

It is possible to give a "formal" derivation of the composition rule, assuming 
that the exponential functions are formal power series. Multiplication of such 
formal series is to be performed term by term and rearrangement of the order 
of terms in a finite or infinite series is permitted but the order of multiplication 
can not be interchanged since the terms are not assumed to commute. 

The term "Lie polynomial" of order n > 1 is used for every homogeneous 
polynomial in <PX and <P, which can be constructed from Lie polynomials of 
lower order solely by forming commutators and linear combinations with 
constant coefficients. A Lie polynomial of order 1 is any linear function of (P, 
and <Ft . Any formal series of Lie polynomials is called "Lie function" and is 
denoted by i(<Pj , (P»). 

We can form Lie polynomials and Lie functions of pseudo-operators (P, , 
<P3 as well as of field operators [<P,], [<P,]. An immediate consequence of the 
second commutator identity (24.5) is that a Lie function I ([<Pt], [(P2)) of two 
pseudo-biquantized operators is Ihe pseudo-biquantization [l( (P, , (P,)] of the Lie 
function i((F, , (P,) 
(24.8) 1([<P,], [<P,]) = [/(<?, , <P,)]. 

We make use of an important fact discovered independently by Baker and 
Hausdorff [1], [2] in 1905: The function log (exp <P,) (exp <P,) is a Lie function.* 

'OaLei «»uil Ilauadorf? (42,43] also gave n formula to describe this function explicitly in terms 
of commutators, but we do not need it here    For details see also a paper by W. Magnus [47]. 

The theorem of Baker and Hausdorff is an immediate consequence of the following charac- 
terization of Lie functions/((Pi , (Pt): 

Let (Pi, <P», <P,', <P,' be four element* such that both (P, and (Pf commute with both <P,' 
and <Pi ; then 

/«P, + <P,', <P, + <?1) - /«P, , <P.) + /«P,' , <PJ). 
For a proof of this fact see a forthcoming paper by Magnus in which various aspects and conse- 
quences of the theorem of Baker and Hausdorff are treated. 



20 K. O. FRIEDRICH8 

As a consequence of this theorem, formula (23.42) impl:es the formula 

log (exp [<P,])(exp [<P,]) - (log (exp <P-)(exp <Pt)]. 

Setting 

log (exp <P,)(exp <P,) - <P„ 

in agreement with (24.6), we obtain 

log (exp [<P,])(exp [<P,]) - [<S\,] 

and thus identity (24.7). 
.\s a Corollary to the composition rule (24.7) we formulate: Let <J\ , <J>», <P» , 

<PIM be four o*eudo antisymmetric pseudo-operators which satisfy the relation 

(24.6)' exp <P, exp <?, exp <P| — exp <P„, ; 

then the corresponding pseudo-biquantized operators satisfy the relation 

(24.7)' exp [<P,] exp [<P,1 exp (<P,) - exp [(?,„]. 

This corollary is an immediate consequence of identity (24.7) whenever a pseudo- 
operator <P„ exists such that (24.6) holds. Such a pseudo-operator evidently 
exists as a formal series and the corollary again follows formally from the Baker- 
Hausdorff Theorem. 

Second Form of the Canonical Transformation 

The first form (23.37) of the canonical transformation 7\ — exp [<R] - 
exp id o <Ra does not yet allow one to carry out the transformation of the 
unmodified into the modified representera in a direct way. For, since annihila- 
tion and creation operators are still "interlocked" in this form, the determina- 
tion of a modified component x.(*)« contributed by an unmodified component 
f«(«). still requires the evaluation of an infinite series. 

It is possible to cast the transformation T into a different form in which 
annihilation and creation operators are separated. 

It is necessary to introduce three special types of pseudo-antisymmetric 
pseudo-operators.   If the three coefficients £__ , #•• , E-+ vanish, 

(24.9), E— - £•• ~ £- = 0, 

for such a pseudo-operator we denote it by £.   We thpn set 

(24.9), E..=E, 

so that 

(24.9), 
\E      0/ 
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By (23.22) we have 

(24.10) [6] - §0 o 6fl - *\A~EA-. 

Note that this expression involves only annihilation operators. 
We denote by 9 a pseudo-antisymmetric pseudo-operator for which 

(24.11), G._ - G„ - (?- - 0, 

and set 

(24.11), (?_• - f7, 

so that 

(24.1 i)4 

\0       0/ 

Because of (23.22), the expression 

(24.12) [g] - ja o set = M*<M* 

involves only creation operators. 
The condition that the pseudo-operators S and 9 be pseudo-antisymmetric is 

satisfied exactly if both E and G are symmetr.c for boson fields, antisymmetric 
for fermion fields, cf. (23.14),, 

(24.13) 'E - ±E,       'G - ±G. 

We denote by 7 a pseudo-antisymmetric pseudo-operator for which 

(24.14), F- - F_* ~ 0 

and set 

(24.14), F.. - F. 

Because of (23.14). we have 

(24.14), F.. - -'F; 

heuce 

(24.14), 
•-('  ') \0        -'Fl 

From (23.22) and (23.27) we derive 

(24.15) [9] «= \a o &flt - 4'FA" db i TV F. 

Thus, except for the additive constant ± i TV F, the pseudo-biquantized operator 
[$] is exactly the proper biquantued operator [F]. 
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The second form of the canonical tramformation can now be defined as 

(24.16), Tt - exp [6] exp [ff] exp [g] 

or 

(24.16), r, - exp {=F§ 7V F\ exp (=FjA'^"l exp {A'FA-} exp [\A*GA*\. 

The inverse operator T~l is then of the form 

TV = exp {±\TrF) 
(24.16), 

• exp |-j//<7.4*| exp \-A*FA"\ exp \±\A~EA-\. 

If an operator if .riven in this form it will he said to be E-ordered.* Here the 
quantification E is meant to refer to "exponential function." 

in order to establish this form we must show that for every psendo-antisyn- 
metric pseudo-htmii^ian operator <R there exist three pseudo-operators 6, (F, § 
of the type described sure that the identity 

(24.17) exp [G] exp (J] exn [£] = exp («] 

holds. 
Such a decomposition of the field operator exp [<R] can now be simply 

effected by performing the corresponding decomposition for the peeudo-opeialor 
exp (R itself, 

(24.18) exp 6 exp SF exp g = exp (R. 

This fact is evidently implied by the Corollary to the Composition Rule formu- 
lated in the previous wibaection, see (24.7)'. We shall show in a later subsection 
that the decomposition (21.18) can be effected very easily. 

The advantage in using the second form of the transformation T becomes 
apparent if we desire to determine the ^-representation of a state * whose 
M-representation is given. To this end we form the state •' whose A'-repres- 
senters are the same as the Af-representers of * and set 

(24.19) * «= T"V - exp [-91 exp [-JF] exp [-8]*'. 

Let us first assume that • is an eigenstate of the modified number M with the 
eigenvalue m such that the only non-vanishing M-representer is x«(*).« This 
function is then the only non-vanishing ^-component of *'.   We expand the 

This ^-ordering is different from the S-ordering, sometimes also called well-ordering, of an 
operator; see [49]. An S-ordered operator is given as an infinite series of which each term is a 
homogeneous polynomial in citation and annihilation operators, the annihilation operators 
acting first, and the creation operators afterwards. The series expansions of exp i —[8]) and 
exp |(5)| lead to S-ordered operators but not the expansion of exp {— [5F]J. Since the latter 
operator commutes with the number N — A*A~, it is immediately applicable as it stands, 
cf. (25.40), (25.41), while derivation and application of its S-ordered form requires a few 
involved operations. 
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exponential function exp [—6] in a power series and apply each term on *'. 
Evidently, since 6 involves only annihilation operators, only a finite number, 
at most m + 1, terms of this series give a non-vanishing contribution. Since 
exp [—JF] - exp j — A*FA~ j exp {=F } Tr F\, it is clear that the field operator 
exp [—5] commutes with the number N and transforms the n-th component of 
exp [—6] •' into another n-particle component. The application of the field 
operator exp [—g] produces components for every number n, but each such 
component consists of only a finite number—at most m 4- 1—terms. Thus 
the iV-representers of the ptate • are easily calculated. 

Modified Vacuum State 
Lee * be the lAodified vacuum state $£. with the Af-representers xo • 1, 

X« •• 0 for rn > 0. Then the corresponding state *' is just the unmodified 
vacuum etatc *!, and we may express •?.. in terms of •?„. through 

*"   = T~X*A 

cf. (23.27).   Evidently, 

exp[-S]<. = <. 

since all terms but the first in the series £ r j [—6] r transform **M into zero. 

For the same reason in view of (24 15) we have 

exp [-5]*• = v*i- 
if we set 

(24.20) v - exp {TfTVF}. 

Hence we are left with ?he relation 

*L = *exp[-sK. 
or 

(24.21) *L = i> exp {-§A*(7A*}*~ . 

A simple calculation now shows that the n-th representer of the state •?,, is 

(24.22) i!(«). - n[n!],/,(n/2)i(-2)-/s(^)(K«., «-0 • • • <K«., «0, 

provided n is even, and 

(24.23) *!(«). = 0 

if n is odd. 
|   JJn accordance with condition (23.30)f we must assume that the operator 
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0 is square traceable so that G3 is an integral operator with a kernel g(a' , a") 
for which 

(24.24) Tr GG* -  [f \ g(e', «") |* dm(s') dm(a") < «. 

The fact that the norm of the state •?.. is unity, which follows from the 
unitary character of T, is expressed by the relation 

1 + E (2*)!h],(-2^,' / I (?* W ' *-•> '"9(!h,»d * dmC),. 
(24.25) -1 J  ' VABy/ 

- | ij I"* « exp [±<SieTrF\. 

Below, see (24.38), we shall derive the relation 

(Re Tr F - -* TV log (1 =F GG*), 

which will enable us to evaluate the infinite ccries (24.25). 
The significance of the number [ TJ | is, of course, clear from the statement 

that 

(24.26) | i,|» = Pr(Ar, 0| Af, 0) 

is the probability that the field will be found in the unmodified vacuum state after it 
UHU found to be in the modified vacuum stale. 

The probability that 2r unmodified particles are found in the modified 
vacuum state is 

Pr (N, 2F I M, 0) - ,,(2>)!(r0,(-2)- 
(24.26), | ,g    v 

• j | \j^y) 9<**', «t»-0 •' • 0iH , «0    dm(a)t., 

as seen from (24.23). This expression can also be evaluated as the term of order 
v in the expansion of exp {T$ Tr log (1 =F GG*)} with respect to powers of GG*. 

The possibility of expressing the transformation of the unmodified into the 
modified vacuum state with the aid of an operator exp \—\A *GA *} as in (24.21) 
was suggested by G. Goertzel.* Once this transformation is found, the trans- 
formation of the Af-reprepenters into the JV-representera of any state <f> caa be 
determined. One expresses the state • in terms of the state •£,. with the aid of 
the modified creation operators B*, expressing these in terms of A', and **.„ 
in terms of •?„ . In this way the state • is obtained from 4>»« with the aid of 
operators built up in terms of Am.   The AT-repreaentera of • can then be found. 

In fact, it would not be difficult to determine the operator G solely trom the 
condition 

B"exp {-l**GA*\*i„ = 0 
and to proceed as indicated. 

•In connection with BoUfrey's thesis [50].   This suggestion was the starting point for the 
\ estimations presented in this Part V. 
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Nevertheless, we prefer to present our procedure of ^-ordering because it 
leads to easily managed explicit formulas. 

First Decomposition 

In order to effect the decomposition (24.18) of the pseduo-operator exp <R, 
we first note that the pseudo-operatoro exp 6 and exp g reduce to 

exp 6—1 + 6, 
(24.27) 

exp S - 1 -r C; 

for, as seen from (24.9) and (24.11), 6* - 0 and g* « 0.   Explicitly we have 

(24.27), 

and 

(24.28) exp 5 

according to (24.14).   A simple calculation then gives 

exp 6 exp ST exp g 

and comparison with 

exp 

ps"C >)• 
(expF 0       \ 

0 exp(-'F)/ 

_ calculation then gives 

Cexp F (exp F)Q \ 

'expF      E(zxpF)G + exp(-T)/ 

(Y..       Y.\ 

\r-     Y.J 
yields the relations 

(24.29) 

exp F - y__ , 

(exp F)G - Y.. , 

E exp F - }\_ , 

£expFG + <jxp(-T) - Y... 

Thus the operator F is determined as 

(24.30) F - log Y~ , 
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and 0 and E as 

(24.31), G - r:ir_+, 

(24.31), E - Y+.YZl . 

The last relation (24.29) is automatically satisfied; for, as will be seen, it is 
a consequence of the conditions *y/<y — 1 and "yy «• 1. The latter conditions 
also insure that E and G satisfy the symmetry conditions (24.13). In fact, re- 
lation 

implied by y'y =» 1, cf. (24 :•>), yields 'G - ± G, and the relation 

=F'j\.r__-f/r__r*_ = o 
implied by "yu - 1 yields 'E = ±E. Setting G - ±'G, in the last relation 
(24.29) we may write it in the form 

±Y.JY„.('Y„rt + cr.r1 - >%•; 
hence this relation follows from the relation 

r+/r__ T i\_'r- = 1 
implied by 'y'l/ - 1. 

With these considerations we have derived the second, ^-ordered, form 
(24.16) of the canonical transformation f ' from the Composition Rule, provided 
the operator log F__ can be formed. It is worth noting that the single particle 
operators E, F, G entering this second form are expressed directly in terms of the 
operators K.. and not in terms of the pseudo-operator <R = log *y. Thus the 
second form of T can be described independently of the assumption that the 
pseudo-operator •y can be written in the form <y — exp <R. 

Since we have not proved the Composition Rule rigorously, we should 
verify directly that the operator T, has the desired properties. It was already 
stated, cf. (24.3), that the relation 

TVaTt = (B 

is a consequence of the first similarity rule. It is apparently not so simple to 
prove the unitary character of T3 ; however we shall do so in Section 25. 

Relation* between E, F, G, and •JJ 

Since various expressions will be needed later for the operators E and G 
in terms of the coefficient** of % they will be enumerated here: 

(24.32) G - YZlY.. = ±'Y..'YZl 

(24.33) G - r:ir- - ±'Y.JY;\ 

(24.34) E - Y.-YZl =» ±'YZl'Y.- 

(24.35) E - y-r;i - ±'Y:\'Y.. . 
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The first column is implied by (22.31); the second column follows from the 
Bymmetry property of E and G established above.   Furthermore, we have 

(21.36) i - OG = (•r++7__)-1 - YZl'Y;\ , 

(24.37) 1 - GG - ('K__r^)_1 - Yll'YZi , 

(24.38) i - EE = (y+/y__)-1 - 'yiiy;!, 

(24.39) 1 -EE = (}'...'Y..y' m 'Y:\YZl . 

The first relation follows from 

F.._[l - flO]'F** = Y.JY„ =F F-/F- = 1 

by (24.32). (24.33) and y"}} - L   The other relations are derived similarly. 
Sinx the operators ±G - '0 - G* and ± x? - 'E - 2?* are theJHermitian 

ad joints of the operators G and E, it is clear that the operators 1 — G G, 1 — G G, 
1 — EE, 1 —EE are non-negative and hypermaximal. Therefore these operators 
possess non-negative square roots. For example, we may introduce a non- 
negative operator ,F through the relation 

(24.40), exp ,F = \'Y„Y-\n - [1 - GGYU\ 

We may also introduce an anti-hermitian operator »F by means of 

(24.40), exp oF - F__['F„F__]"\ 

Evidently, 

expoF* - ['Y„Y..A-Ui'Y„ -= \'Y„Y-\xnYZl - exp \-oF). 

Consequently, the operator t <>F is hermitian, in fact it is hypermaximal.  Because 
of 

(24.29), exp F - F__ , 

relation 

(24.41) exp 6F exp tF = exp F 

holds. 

Trace Relations 

We maintain that relation (24.41) implies relation 

(24.42) exp 7V ,F exp TV ,F - exp TV F. 

This trace composition rule* is a—rather simple—analogue of the general compo- 

•If the operator F acts in a finite dimensional space the expression exp TV log F reduoes to 
the determinant of the matrix F*. The trace composition rule (24.42) is, therefore, the ana- 
logue of the rule that the determinant of the product of two matrices is the product of their 
determinants. 
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sition rule (24.7). Like the general composition rule, it follows from the Baker- 
Hausdorff Theorem; for, the trace of a commutator of two operators is the 
commutator of the traces of these operators, namely zero. 

Since the operator t oF is hermitian its trace is real; i.e., 7V 0F is imaginary. 
Consequently, | exp Tr oF | * 1 so that 

(24.43) | exp Tr F | - exp Tr ,F 

or, by (24.40), , 

(24.44) (Re Tr F - Tr ,F =- - J Tr log [1 - GG]. 

The absolute value of the number 17 introduced earlier, see (24.20), can now be 
expressed as 

i« I - exp j=Fj7V,Fj 

or, by (24.40), and (24.44), as 

I i,| - exp{=F$7VlogT„>'__} 
(24.45) 

- exp {±}7Vlog[l - GG]]. 

Since, obviously, the operator Tlog (1 — GG] — Tlog [1 =F GG*] is positive 
definite, its trace is positive, and consequently | 17 | < 1, in agreement with 
(24.25). Incidentally, formula (24.45) gives an evaluation of the infinite series 
(24.25), 

• j    \jjL) fa* » •*.•-•) ' •' 9(*t, «i) I  dm{«)u 

(24.46) 

«P5Z(±irv 

»»» • I (fi»t , »ir)»(»t., *»,-i> • • • g(t», *i)0(«i, «,) dm($) 

which could perhaps be derived directly.7 

Condition* for the Existence of the Canonical Transformation 

In conclusion, we summarise the conditions under which the second form of 
the canonical transformation T, «• exp [8] exp [7] exp [9] exists. 

We have assumed that the operators K^. are bounded and that the pseudo- 
operator <\j is p^i'do-hermitian and satisfies the conditions ^"y — '<y<y •» 1; 

This formula ia related to the evaluation of an infinite series derived by Feynman [4] with 
the aid of his graphs. 
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moreover, we have tacitly assumed that the operators K„ and K*» possess 
inverses. As a consequence, relation (24.36) holds and, since Y*. and y__ are 
bounded, the operator 1 =FOG* has a positive lower hound. This fact may be 
expressed by the relation 
(24.47) \\GG* N < 1 

in the boson case, if we denote by || GG* || the least upper bound of (f.GGV) m 

H G* * ||a for all functions ^ in $ with || + || - 1; similarly, || E*E \\ < 1 holds 
in the boson case. For the existence of the operators [9] and [S] additional re- 
strictions must be imposed, namely that the operators G and E possess square 
traces: 

(24.48) Tr GG* < •    ,   Tr E*E < «*. 

We maintain that under this condition combined with (nAA7) the operator 
Tlog [1 =F GG*] also possesses a finite trace. This can be deduced most easily 
from the fact that the condition Tr GG* < <» implies that the operator GG* 
has a pure point spectrum of eigenvalues *y3 > 0 for which J] 7' - Tr GG*. 
As a consequence it is seen that 

TV log [1 + GG*] - Z log [1 + V] < E-y'; 

hence we may conclude that 

(24.49). Tr log (1 + GG*] <TrGG* 

in the fermion case.   Furthermore, we have 

-Trlog[l-GG*]- -ElogU-T'mi -7L.f Zy\ 
and since ?L* • 11 GG* ||, we may conclude that 

(24.49)* -TV log [1 - GG*] < (1 - || GG* \\]'1 Tr GG* 

in the boson case. 
The conditions (24.47), (24.48) are somewhat stronger than necess&ry for 

the existence of the transformation 7\ ; however, the conditions Tr GG* < <*> 
and Tr E*E < » are necessary. 

If these conditions are not satisfied, the field does not possess a particle 
representation with respect to the operators B" as creation and annihilation 
operators. Nevertheless, it would seem likely that the field possesses an occu- 
pation number representation of the second type in the aense explained in 
Section 19, Part IV. The total weight associated with this representation would 
then be 

(24.50) W - =Fj Tr log [1 =F GG*] 

and hence infinite if Tr GG* — »; in other words, if TJGG* •» » the field would 
be "myriotic" with respect to the operators B". Although it would be of interest 
to follow up this possibility, it will not be done here. 
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25. Third and Fourth Form of the Canonical Transformation 

In this section we shall establish two further forms of the transformation T. 
The third form involves only the operators G, <>F and their conjugates; the fourth 
form results from the third by ^-ordering. It is possible to show that the fourth 
form is identical with the third as well as with the second without using the com- 
position rule. The third form is evidently unitary and thus it follows that the 
othrrs are also unitary. 

The main reason for discussing these other forms is not so much that v.<? 
want tc prove the identity of the fi^st and second forms of the operator T. It is 
rather that we want to have the opportunity to formulate and apply other simi- 
larity and decomposition ru'es. The eorWnt of the present Section 25 is not 
essentially used in r he siibfo^uent settlors. 

Third and Fourth Fori.i of che Transjo, motion T 

The third form of the canonical transformation will be derived from a 
"second" decomposition 

(25.1) «JJ « exp oJF exp ,<R 

of the pseudo-operator *JJ = exp (R in which the pseudo-operator 

(25.2) 
\0       o/7 

possesses only diagonal terms while terms of this type are absent from the 
pseudo-operator 

(25.2), 

These pseudo-operators & and ,(R; which we shall describe below, will be seen 
to be pseudo-antisymmetric and pseudo-hermit ian, cf. (23.14) and (23.16). 
Having found the decomposition (25.1) we shall obtain from the composition 
identity (24.7) the third form 

(25.3) Tt - exp [05] exp [,<R] 

of the canonical transformation T in which, by (23.22), (23 27), 

(25.4) exp [oSF] = exp {Tj Tr <>F) exp {A* oFA~\ 

and 

(25.4), exp [,«] = exp [\A* ,«_«. A* =F \A~ ,«•_ A'}. 

Because of the pseudo-hermit ian character of 0CF and ,<R, both operators exp [„$] 
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and exp dot] are unitary; hence it is evident that the operator exp [<&] exp [,(R] 
is unitary. 

The fourth form of the operator T will be obtained by decomposing the 
pseudo-operator exp ,(R as 

(25.5) exp ,(R = exp , 8 exp iff exp ,g 

corresponding to the first decomposition (24.18). The composition identity, 
cf. (24.17), then gives the fourth form 

(25.6) T. = exp [0JF] exp [,6] c:.-p [,ff] exp [,g] 

of the canonical iransformmion, where, as in the secom* fo.tr (24.16), annihilation 
and creatioi operators are separated. 

Te shall show that the ic'sntity of the fourth form of T with botli the third 
and second forms can be verified without using the composition identity—which 
was not proved, but only derived formally. Since the third form is evidently 
unitary the same is true of the £?-ordered second and fourth forms once their 
identity is established. Note that the pseudo-operators 8, 9 and i S> 19 are— 
in general—not pseudo-hermitation and that therefore—in general—the opera- 
tors exp [8], exp [9] and exp [, 8], exp [,9] are not unitary. 

Various other advantages of the fourth form will be discussed later on. 

Second Decomposition 

In order to effect the second decomposition (25.1) of the pseudo-operator 

\Y..       Y.J 
see (23.6), we first decompose it in the form 

(25.7) <y = 0<y ,<y 

with 

(25.8)o 03 - 

and 

/,Y~M'Y..Y..]%n 0 \ 

\ 0 'YZl['Y„Y„]in/ 

I      [*Y„Y~V ['Y„Y-]U7YZ\Y.A 
(25.8),       ,«}/-( 

\['r__y++],/,r;,
+ r+_ \'Y„Y„\xn    / 

The two diagonal terms in the pseudo-operator ^ are evidently unitary since 
Y— « !%• , 'K** — 'Y .   The first of these terms is in fact identical with 
the right member of relation_(24.40)2 .   The two terms can therefore be written 
in the form exp „F and exp „F with 0F - log {Y—['Y+.Y~]l"\.   Consequently, 
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the pseudo-operator o'U w °f tne form 

(25.9) oli - exp 0S, 

where the pseudo-operator <# is given by (25.2) and (24.40) *. 
Evidently, the pseudo-operator 03 is pseudo-hermitian and pseudo-anti- 

symmetric and hence o'y is unitary. 
The elements of the pseudo-operator |<\J can easily be expressed in terms 

of the operators 

(25.10). G =- KILK- - ±'y_/r:L 

and 

(25.io). G - Y:\Y.. - ±'r../ni, 
cf. (23.32), (23.:<3).   In fact, using the formulas 

(25.11)      'r\.K__ ~ [1 - GO]'1'9,       'Y-Y„ = [! - GG]~"\ 

cf. (24.36), (?4.37), and noting that G*-±Gwe may write 

([1 - GG]-Ut        [I - GG]-l"G\ 

(1 - GG)-U,G       [1 - GG]~xn ) 

We now maintain that his pseudo-operator ,*y is of the form 

(25.13) i*y - exp t(R 

if we choose for ,(R the pseudo-operator 

(0 h(GG)G\ 
  ), 

h{GG)Q          0    / 

with 

h(z) -^"arctanh*'". 

This statement may be proved by a power series expansion of cosh ,<R and sinh ,(R, 
arctanh zx/i making use of the identities 

(25.15), Gf(GG) « f(GG)G, 

(25.15), f{GG)G = GftGG), 

which are evident^ for polynomials / and then follow for functions / for which 
the operators f(GG) and f(GG) are defined. Thus the second decomposition of 'y 
is effected. 

The pseudo-operators ,6, ,5, » S of the final decomposition (25.5) can be 
obtained from the terms of the pseudo-operator xy as given by (25.12) with the 
aid of the formulas (24.30), (24.31) by substituting the terms of ^ instead of 
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those of *y.   We find 

(25.16) ,F = -i log [1 - GG] 

(25.17) ,G - G,       tE - G; 

in deriving (25.17), identity (25.15), is to be used. The pseudo-operators 
i S) i£. i5 are lQen 

(0       G\ /0       ()\ 
(25.18) ,9- I,      ,6 = 1 

\0        1/ \0      0/ 

, /'-og [1 - GG] 0 \ 
(25.19) ,tf - -§l » 

\ 0 -log II -GG]/ 

and their exponential functions are 

/l      G\ /l       0\ 
(25.20) exp ,9 - I I,       exp ,8 - I I, 

/[l - GG)-U* 0        \ 
(25.21) exp.J-l I. 

\        0 (1 - GG]l'V 

Final Form of the Transformation T 

The fourth form of the transformation T can now finally be written as 

r« - exp {T§ Tr<>F\ exp {±i Tr log [1 - GG]} exp \A* oFA~\ 
(25.22) 

• exp |=FM"GA-} exp {4* log (1 - GG]l/1A-\ exp {M*GA*}. 

Since the operator oF in acti-hermitian the firdt factor here is a number of absolute 
value 1 and therefore, rather insignificant. The second factor, on the other hand, 
is a positive number less than one. Actually, tins factor is simply the absolute 
value of the number ij introduced above, see (24.45). 

Identification of the Third and Fourth Form of T 

In order to prove the identity_of the third_snd fourth forms of the canonical 
transformation, we replace G and G by tG and tG in , R, 19»: 9 a* given by (25.18), 
(25.19), letting t be a real parameter. We note that the derivatives of ,6, ,9, 
,7 with respect to t are given by 

(25.23) ,8-r1,6,     ,s = r\sf 

((1 - eGQ)tGG 0 \ 
)• 

0 -[1 - eOG]tGG/ 
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Evidently, each of the pseudo-operators ,6, 19, i$ commutes with its derivative. 
The derivatives of the exponential functions are therefore given by 

d • d 
(25.25) j exp , 6 = , C exp , E,       j exp ,8 = iS exp i9» 

(25.26) -r exp ,5 = ,5 exp ,5. 

We observe that the derivative 

•(ft = I 
\f. - 

0 [1 - eGG)'G\ 
(25.27) : 

\[i - eQG[-xQ 0 / 

of the pfeudo-operat^r |{Jt, given by (25.14), also commutes with »<R so that 

-Tj exp ,(R •» ,<R exp i(P 

Since, by (25.5) 

exp , E exp 15 exp , 9 exp (— ,<Jt) = 1, 

the derivative of this pseudo-operator with respect to t vanishes. Hence we 
obtain the relation 

exp (-.8) exp (-,$),€ exp ,JF exp ,8 
(25.28) 

+ exp (-,9)i£ exp ,8 + »8 - i« = 0, 

which, of course, could also be verified directly. 
Now we consider the operator 

K - exp [,S] exp [,'J] exp (,8) exp (-,«]; 

our aim is to prove that it is the identity. Again we replace G and G by tG and 
tG and differentiate with respect to t. As before, the dnvative of each of the 
exponents [18], ••• , [,<ftj commutes with the exponent. Consequently, the 
derivative K of K m given by 

K = exp [,S] exp [,5F] exp [,S)Z exp [-,«] 

with 

Z - exp (-.8) exp [-,$](, 8] exp [,5] exp [,§] 

+ exp [-.SH.S] exp [,Sl + [,81 - [i«l. 

Now we make use of the "second similarity rule" which we shall prove in 
the next subsection.   It states that the relation 

exp (—<Pi)<P» exp <P, « <P, 
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between pseudo-antisymmetric pseudo-operators <P, , <P», (P» entails the relation 

exp [-<P,][(P2] exp ((P,] = [(?,] 

for the corresponding pseudo-biquantized operators. From this rule in con- 
junction with relation (25.28) we immediately infer 

Z = 0 
and hence K = 0. Consequently, K is constant, and since K reduces to the 
identity for i = 0, the desired statement K — 1 follows. Thus the identity of 
the third and the foui !.h forms of the operator T is established. 

Second and Third Similarity fcile 

The second similarity rvie which states that the relation 

(25.29) exp (-<P,)<Pi exp <P, = 6-, 

between three pseudo-antisymmetric operators a', , t?2 , <P» entails the relation 

(25.30) exp (-<?,](<?,] exp [<P,] - [<PS] 

between the corresponding biquantized operators can be proved in the same 
way as the first similarity rule (23.35). One replaces <P, by ftP, and differentiates 
the operator J — exp [«P,][exp (—f(P,)(?t exp [/(?,] exp [—W,] with respect to (, 
obtaining 

exp U<P,]{[[<P,], (exp (-AP0<Pi exp UP,]] 

- [exp (-«P,)(<P, , <P,] exp t<P,]} exp [-«?,]. 

This expression vanishes since, by the second commutator rule (24.5), 

[(<P,1, [exp (-«P0<Pt exp W>,]] - [[(P, , exp (-«P,)<P, exp «P,]] 

= (exp (-KP,)[<P, , <P,] exp ftp,]. 

Consequently, the operator J is independent of t and hence equal to [<?,] since 
it reduces to this operator for t — 0. In order to make this reasoning complete, 
one should, of course, supply arguments of the type needed to establish the first 
similarity rule. 

From the second similarity rule one immediately infers the fact that relation 
(25.29) implies the relation 

(25.31) exp I~<?,]/([<P,]) exp [(?,] = /[(P.] 

for every polynomial /. The same relation also holds for functions / for which 
/([<P,]) and /([ <P,]) can be defined. In particular, we are led to the third similarity 
rule: Relation (25.29) implies relation 

(25.32) exp [-<?,] exp [<Pa] exp [<P,j = exp [<P,]. 

It is interesting to observe that relation (25.29) implies relation 

(25.33) exp (-<P0/(<Pi) exp <P, = /(<P,); 
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this relation is immediately verified for polynomials / and therefore holds also 
for more general functions /.   In particular, we have 

(25.34) exp ( — (Pi) exp <Pa exp (P, *= exp <P, . 

In conjunction with this relation, identity (25.32) becomes a special case 
of the corollary to the composition rule (24.7)'. This special case is thus derived 
independently of the—unproved—general composition rule. 

We shall use the third similarity rule in establishing the identity of the 
fourth and the second forms of the transformation T. 

Composition Rule for Biquantized Operators 

We shall need another special r <\se of the composition rule, which also can 
be proved without the general rule, namely the case in which the pseudo- 
aiuasymmetric pseudo-operators <P( , <Pa, <?t, have only diagonal terms; i.e., they 
are of the form 

(25.35) 3 = C ') \0        -'F/ 
The rule then states that relation 

(25.36) exp JF, exp ffa = exp SF„ 

for three such peeudo-operatora entails relation 

(25.37) exp ($,] exp [5,] « exp [$„]. 

Clearly, relation (25.36) consists of the pair of relations 

(25.38) exp F, exp F, - exp F„ 

and 

(25.38)' exp (- V,) exp (- 'Ft) = exp (- fFlt); 

the second is evidently a consequence of the first.   By (23.22), (23.27) the 
composition formula (25.37) can be written as 

exp \A*FtA~ ^\TrFx\ exp \A*FtA~ T * Tr Ft) 

= explA*FitA-^\TrFlt\; 

because of the composition rule for traces (24.41), (24.42), it is equivalent with 
the composition rule 

(25.39) exp [A*FtA-] exp lA*FtA~\ - exp [A*FltA-\ 

for ordinary biquantized operators.   It ie, therefore, sufficient to derive formula 
(25.39) from (25.38). 

For this purpose we shall use the particle representation of tne states *, 
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The representation 
A*FA~*~ {(F".+ ••• + F*)*„(«).| 

of the state A*FA~Q, cf. (6.35), involves the operators F" which tct on the 
function ^«(«). only in so far as this function depends on *,. In the representation 
of exp [A*FA'} *, 

(25.40) exp [A+FA-\*«-• {exp (F" + • • • + *"•)*.(•).}, 

cf. (6.36), we may write 

(25.41) exp (F" + • • • + F") - e<p (F") • • • exp (F"). 

since the operators F"\ • •   , F" commute. 
Moreover, iLc cpei%tors F\* an<* F'9

f, formed irom two operators Fx and 
Ft, commute even if F, and Ft do not, provided a ^ 0; for, the two operators 
then act on functions of different variables.   Consequently, we have the identity 

exp (FT + • • • + F\') exp (F*f' + • •. + FJ-) 

= exp F," •   • exp F\" exp FV • • • exp FJ* 

= exp F," exp FJ' • • • exp F," exp FJ* . 

Applying relation (25.38) And relation (25.41) to F — F„ we obtain 

(25.42) exp(F;, + ...+Ff)exp(F;' + • • • + F\') - exp(F\\ + •••+FJ;). 

Since, according to (25.40), the ?tates exp {/1*F,A~|<1>, exp {A*F,.4~|* and 
exp {A"FitA~) 4 have the representations 

exp {A*FlA~\ exp \A*FtA~\* 

~ {exp (FJ' + • • • + F*,*) exp (FV + • • • + f7)*.(«).| 
and 

exp [A+FltA-\*~ {exp(Fli + ••• + F*,*,) *„(«).}, 

identity (25.42) insures that these two states are the same. Thus the composi- 
tion rule (25.39) is proved and rule (25.37) follows immediately. 

It is remarkable that the derivation of the composition rule for biquantized 
operators from a representation makes its validity rather obvious while it does 
not seem obvious how to derive this rule by essentially algebraic means legalizing 
the use of Baker and Hausdorff's theorem. 

Identity of the Fourth and Second Forms of the Operator T 

In order to show that the fourth form 

7\ - exp [0JF] exp [,6] exp [,ff] exp [,g] 

of the operator Tt cf. (25.6), is identical with the second form 

T, = exp [fi] exp [3] exp [gj, 
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cf. (24.16), we first verify the identity 

(25.43) exp „$F exp , 6 = exp 6 exp 05. 

This is immediately done by writing the pseudo-operator exp 07 in the form 

(>'-[l - GO]"1 0 \ 

o r„u - aoyv 
cf. (25.9), (25.8)o, (25.11) arid the pseudo-operators exp 6, exp , 6 in the forms 

exp 

cf. (24.27), (24.31),, 

exp |6 = 

P e - i !, 
\Y._Y\        1/ 

\a     1/ 
ci. (25.20), using identity (25.15), and setting G - Yl\ Y.. by (24.33). 

The third similarity rule (25.32) is then applicable to (P, — — 0SF, (Pt — 18 and 
<P» = S; combined with (25.6) it leads to the form 

r« - exp [8] exp [off] exp [,S] exp [,gj. 

We next employ the decomposition formula 

(25.45) exp 05 exp ,5 » exp 9, 

which follows from (25.44), (25.21) and 

nap 5 r- °\ 
\ 0        'YZll 

cf. (24.28), (24.30), (25.11). Now we can apply the composition rule (25.37) 
for biquantized operators and obtain the expression 

Tt - exp [6] exp Iff] exp I,g] 

for the fourth form of T, which is the same as the second form because , Q — §, 
see (25.17). Thus we have shown that the fourth form of T is identical with 
the second without using the general composition rule. Since the fourth form 
is identical with the third form which is evidently unitary, we conclude that the 
second form of T is unitary. 

26. Application to Boson Fields 

Having found the desired canonical transformation in general we proceed 
to discuss its specific nature in the original problem of a boson field with spring 
forces. 
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Reduction of the Quantized to the Unquantized Field Problem 

The pseudo-operator <y associated with the boson field with spring forces is 
given by 

Y   « Y.• = MT'^ir'" + ru,tin\ 
(26.1) 

Y._ - K_. - itT^Q-'" - T-,/'Q'/,j, 

cf. (22.2*     Here T and Q are the modified and unmodified energy operators 
for sino 1; parities, connected by the relation 

(26.2) T" - Q* + Q 

in which the operator Q corresponds to the "spring constant;" cf. (22.15). 
It is therefore possible to express the operator G — YZl Y.+ and various 

other operators that played a role in earlier discussions in terms of Q and T. 
For this purpose it is convenient to introduce the operators 

(26.3) T - Q-I/,TQ-,/1 

and 

(26.4) Z - T,',Q-,/,r-I/'. 

Clearly, the operator r is Hermitian while Z is unitary; for, 

Z* - r-t/tQ-«"T»/tf 

hence 

z«z - r' srr-,/f = 1 
and 

ZZ» - T»"C-'"(Q'"T-'Q»'»)Q «"T"» . i. 

The operators F._ and F_+ may be written in terms of r and Z as 

(26.5) y__ - |zr-"*[r + i],     y_. - izr-^ir - i], 
the operator 0, defined by (24.31), may be written simply as 

(26.6) G - ;i• + ir'ir - 1] 

and, since G ~ G, the operator 1 — GO becomes 

(26.7) 1 - GO - 4r[r 4- I]"'. 

Finally we note that the unitary operator exp 0F, defined by (24.40), is exactly 
the operator Z 

(26.8) Z - exp oF. 

Suppose the operators Q and T are "known," so that the operators Z, r, 
and hence ©F, G — (7, and so on, can be formed.  Assuming that these operators 
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satisfy the conditions formulated earlier, the canonical transformation T in any 
of its various forms can be set up. By expressing T in terms of fl and T, we 
may also say that the problem of modifying the quantized field hat been reduced to the 
problem of modifying the unquaniized field. 

Condition* for the Existence of the Canonical Transformation 

Necessary and sufficient conditions to be imposed on the operators G and Z 
were discussed at the end of Section 24. These conditions are equivalent with 
restrictions on the disturbance operator Q; it does not seem to be easy, however, 
to give to these restrictions on Q a simple, directly verifiable, form. Neverthe- 
less, certain general statement* can be made about them; in doing this it is 
convenient to work vviththe rnerator r instead of G. 

The conditions I! GG \\ < 1 and TrGG< », which were introduced at the 
end of Section 24, of. (24.47), (24.48), are essentially equivalent with the condi- 
tion 

(26.9) 7V(r - 1)» < oo, 

as could be derived from the formula 

(26.10) r - 1 - 2G[1 - G]-\ 

The operators T and Q are easily expressed in terms of the operators r and 
Qby 

(26.11) T - Q1"•1" - Q'"(r - l)!!'" + Q 

and 
Q «= Q'^rarn1" - a* 

(26.12) 
- Q'"(r - i)Q(r - I)Q

V
' + o^r - lja'" + o'^r - DO

3
". 

Special Cases 

The requirements on the operator r formulated above exclude certain types 
of disturbance or—in the case of several media—interaction. For example, 
homogeneous interaction is excluded. 

We say an operator A is "homogeneous" if it commutes with the momentum; 
for example, A is homogeneous if its z-representer is an integral operator with a 
kernel A(z', x") which depends only on the difference z' — x", i.e. if 

(26.13) A(x', z") - h(xf - x"). 

Here it is implied that the field extends over the infinite space. 
If the interaction operator Q is homogenous then r is also homogeneous; 

for, Q commutes with ft in this case and the operator r is therefore given by 
r - 1 + Q'*Q as seen from (26.12). Evidently, the kernel y(x', x") - y(x' - x") 
of the operator r does not satisfy the condition Tr (r — 1)* < <*> since 
ffy* (z' -x")dx' dx" -». 
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Another noteworthy fact is that one-dimensional media with vanishing rest 
mass it are excluded if the spring constants are non-negative everywhere. 

To verify thia statement we may introduce the Fourier transforms q(k', k") 
and y(k', k") of the kernels q(x', x") and y(x', x") of the operators Q and r - 1. 
Since (26.12) holds and » - 0 these kernels are related by 

q(k', k") = | k'k" |'" (| *' | + | *" \)yt(k', k") 

+ I k'k" r f y(k', k)\k\ y(k, k") dk. 

Since the i- and fc-rpaces are assumed one-dimensional, condition 

jj i 'TO.', *'*) i3 dk' dk" < » 

implies that | k'k" \u% y(k', k") vanishes as | VI \ and \ *" | ->0.   ConsequenUy, 
9(0,0) — 0.  This relation now is equivalent with 

// 
qixf, x") dx' dx" - 0 

in contradiction to the assumption that <?(x', x") is non-negative. 
Since the failure is due to the behaviour of the function q(k', k") for k' » 

jfc" «• 0 we may say that a non-negative spring constant causes an infrared 
catastrophe in a one dimensional medium. One of the infinities occurring in 
Sollfrey's problem is due, essentially, to this fact. 

Finally we remark that two- or more dimensional media are excluded if 
the springs which provide the interaction are attached to isolated points. Ultra- 
violet catastrophes would occur in such cases. 

We now consider an example which is very unrealistic physically but can 
be handled explicitly. In this example the z-representer of the operator T — Q 
if of the form 

(26.14) {•(*', x") - tf(x')r(x"), 

in which the real valued function f(z) and the constant * are at our disposal. 
The case in which the interaction operator Q is itself of such a form could also 
be treated explicitly but would be more complicated and equally unrealistic. 

Instead of the r-representers we prefer to work with the energy representers, 
setting 

(26.15) f(w', »") - »?(*>')?(«") 

instead of (26.14). We assume that the energy is connected with the position z 
in a real manner. The energy range ia M < w < °° where n is the rest mass, 
which may be zero or positive. The condition that the operator with the kernel 
(26.15) produces quadratically integrable functions is 

(26.16) /"irwr*» 
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this condition must therefore be imposed. We must also require that the 
operator T be positive definite. This k automatically the case it t > 0, but if 
i < 0 we need the relation 

(26.17) -i [  «-' | f(w) \*dm < 1, i < 0. 

From relation (26.11) we see that the kernel of the operator r° is 

IV,*") - i(«v)-,/,?(«or(«"), 
provided thi* operator exists, this is the case it* 

(26.18) [" »'1 ! ?(«-) !" rf« < 

Since the trace of the square of the operator I' is exactly the square of the left 
member of (26.17), this operator is square tr&ce&bh: if it exists.   By virtue of 
(26.17) this condition is automatically satisfied ift<0orif/i>0. If i > 0 
and M = 0, however, functions f («) can be defined which satisfy condition (26.16) 
but not condition (26.18). Thus we see that it may happen that the >/per:ator T is 
defined and has a spectrum of the same type ac 2 and still the canonical transformation 
T does not exist. 

If t < 0 and n > 0 the operator T may possess a point eigenvalue v0. The 
condition for the occurrence of such a point eigenvalue is evidently the existence 
of a quadratically integrable function f 0 (<•>) for which 

(•* ~ ««)*o(w) + »f(«) /   ?(«)*<>(«) dw - 0. 

This condition is satisfied for 

(26.10) *„(«) - c(w - vo)-f(«) 

provided the value v «* v, ran be so chosen in the interval 0 < w < p that 

(26.20) -t [" (« - u)-1 | f(«) |"** - 1. 

When v varies from 0 to n the left member of this equation varies from the left 
member of condition (26.17) to the left member of condition 

(26.18) -t f (« - M)'1 ! ?(«) I' du > 1, i < 0. 

Clearly, if this latter condition is satisfied a point eigenvalue u •» v0 exists. 
Thus we see that it may happen that the spectra of the operators T and Q are of 

different types and still the canonical transformation T does exist. 
The existence of a point eigenstate or "bound" state *"0 of the operator T 

entails the existence of bound states of the modified field. If ^0 (x) is the repre- 
senter of ¥0 and v0 the eigenvalue, the state *. of the field with the particle 
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representer ^. (a), • ^0 («,) • • • ^0 (*.) is such a bound state with the eigenvalue 
n v0. One may say that in this state the field consists of n particles in the state 
*o . Thus we see that the canonical transformation may exist even in cases in 
which the modified field possesses bound states while the unmodified field does not. 

27. Transition Operator. Scattering Operator 

In this section we shall calculate the transition amplitudes connecting the 
state of the field at two different times. We can do this in two ways: Either 
we can employ the "method of spectral transformation" making use of the 
fact that variation Li time of the modified part.oic icp -centers can immediately 
be determined by applying the operator exp j —itHB\. Or we may utilise the 
fact that the annihilation operators at two difo^n* times are connected by a 
transformation similar to that which connects modified and unmodified operators 
of this kind. 

We shall also study the asymptotic behavior of the transition amplitudes 
and, in particular, give a simple asymptotic description of the incomplete 
scattering operator in terms of "original but scattered," "spontaneously emitted 
and half scattered/' and "spontaneously emitted but not scattered" particles. 
We shall see that no complete scattering operator in the strict sense exists, but 
that nevertheless the transition probabilities approach definite limits as the 
time interval increases indefinitely. 

Method of Spectral Transformation 

We employ the canonical transformation T in order to express the particle 
representere f•(•)•(<) at any time i in terms of the "Ar(0)-representers" ^.(«).(0), 
see (22.27). We consider the functions f.(«).(0 as the JV(0)-representers of a 
time-dependent SchrOdinger state 4>.(t), cf. Section 15 footnote 4 and (15.15). 
As seen from (22.28), (22.82), (22.17), this state is given by 

(27.1) *.(t) - r* exp {-UA*tA'\T*. 

Since the relation 

(27.2) exp \-itA*TA-\T « T exp [-itB*TB~\ 

can be derived from the relation AT - TB", see (22.34), the state *.(<) 
can also be expressed as 

(27.3) *,(*) - exp {- itB* TB" j * - exp {- itH,} •, 

and thus be recognized as the solution of the Schrfidinger equation 

(27.4) tV,*.(0 =» H.*t(Q. 

Instead of using •,(*) we prefer to use the corresponding interaction state #,(Q 
given by 

(27.5) *.(0 - JP(0* 
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when we set 

(27.6) W(t) - exp \UA*QA"\T"% exp {-UA*TA-\T. 

or 

(27.7) W(t) - exp [UA*QA"\ exp {-tlB'TB"). 

Transition Operator 

Operators of the type exp A*AA~ will occur occasionally in the following. 
Since we want to use our similarity and composition rules for pseudo-biquantised 
operators we introduce to every operator A the pseudo-an asymmetric pseudo- 
operator 

(27.8) f*  ') \0        -'til 

and use the relation 

(27.9) exp [Al - exp |iAAA| • exp [\ Tr A} exp A*AA~. 

In particular, although the traces Tr Q and Tr T do not exist, we shall introduce 
the pseudo-operators Q and f and furthermore the field operator 

(27.10) f~\t) - exp {rttQJir-* exp {-t<(fj|7\ 

which we shall call the "transition operator." We have reserved the notation 
f(t) for its inverse, the operator 

f(t) - T~l exp {t<[f]}7 exp [-it[Q]) 
(27.10), 

- exp{»7[Ql}f-,(-0exp{-t<[Q]} 

in order to facilitate the description of the decomposition formulas. 
If the operator ^'(0 existed it would differ from the operator W(t) by the 

factor exp {— ith |, as seen from (27.9) for A = Q and A = ?; i.e., 

(27.11) f~\t) - exp \-ith\W(t), 

with k — $ Tr (T — fl), cf. (22.26). Assuming that this difference trace exists, 
we may define f(t) by (27.10), and employ our rules as we would if the ex- 
pression (27.10), were defined. The resulting identities must, however, be 
verified by some other methuu.   The blate 

(27.12) *.(0 - exp {-itfc|*.(0 = f_,(0* 

will be called the "adjusted interaction state." 
Another form of the transition operator is 

(27.13) T~\t) = exp <M a o (ia\ exp {-^ <B o ffflj. 
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this formula is identical with (27.10), aa we may deduce from the relation 

(27.14) CllT'y] - i<B of® 

or 

a o "yfn/a = <yct o f^a - <B O TCB, 

which follows from (22.21). We need only use the first form T — Tx — 
exp ([log 1/]) of T and the third similarity rule (25.32), (25.29), with (P, = log % 
<P, - f. 

Direct Method 

Expressions for the operator 'T(i) can al?o be derived by recognizing that the 
annihilation and creation operator*. A"(s, .') at tho time » and those at the time 
t = 0 are connected by a homogeneous linear relation* of the same type as those 
which connect the operators B* with the operators A". 

We note that relation (22.19), with * in^te^d oi z, can be written in the form 

<B(a, I) = exp {-tfTa)a(«, 0) 

or simply as 

(27.15) <B(0 - exp {-t<f}®(0). 

If we insert this expression into (22.24) and then insert, the result into (22.21) 
for t - 0 we obtain, by (23.20)', 

(27.16) a(0 « *y exp {-iff }<ya(0). 

Since we would like to employ our rules, we shall work with the "adjusted" 
annihilation and creation operators A"{a, t), given by 

(27.17) Ct(0 - exp |t<Q)<K0 

or 

(27.18) o(0 - *y«)a(0) 

with 

(27.19) *y(0 - exp {t<Q)*U exp {-tfT}<y, 

or 

(27.19), 
$(0 - *y exp |«f ft| exp {-ttU} 

= exp {UQ)'y(-t) exp {-tfQ}. 

This is true even if the disturbing operator Q is not independent of the time. We shall 
not treat this case hare, although it would be interesting to do so, in particular, tinoe the 
results could presumably be cast into a Lorenti invariant form. This case will be treated in a 
forthcoming paper by B. Zumino. 
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The theory developed in the preceding sections can be applied to this trans- 
formation *y(0 since it evidently satiaiiea the condition $(()'<$((<) • 1. Without 
assuming that the operator ^(0 is of the form exp (R(0, we may find the corre- 
sponding canonical transformation by the composition rule. On the right mem- 
ber of (27.19), we replace'% exp [it?], % and exp j -UQ] by exp [log "u] - T'\ 
exp {t**[f]}, exp [log *y] - T, and exp [— it[Q]} respectively. The resulting 
canonical transformation is seen to be exactly the field operator T(0, given by 
27.10), .   Relation (27.18) leads therefore to relation 

(27.20) d(0 = f(0«(O)f-'(O 

from which we deduce that the &(Q)-repre8entation of the adjusted interaction stale 
*. , cf. (27.12). givt a d(t)-rtpre9entation of the state #. 

Properties of the Transition Operator 

We proceed to calculate various quautiiire which will enable us to analyre 
the nature of the inverse transition operator f(t). We shall in particular refer 
to the second form 
(27.21) f(t) - exp [6(0] exp [5(0] exp [9(01 

of this operator, see (24.18).   From (27.19) we find 

?_.(<) = ['}%• exp \UT]Y- - 'Y... rxp l-itT}Y..] exp {-UQ\ 
(27.22) 

F-(0 - ['?•• exp [itT\Y-. - 'Y.. exp [-itT)Y„] exp [UQ\ 

or, irom (24.35), (24.34), 

f„(0 - 'Y..[exp {U7} - E exp {-itT\E]Y- exp [-UQ\, 

y.^(0 - 'F^iexp iitT]E - E exp \-irt})Y„ exp {itQ}, 

and, finally, 

y..(0 - 'Y„ exp {t*T)[l - ErW)Y- exp \-itQ], 
(27.23) 

f-(0 =* 'Y„ exp iUT\[E - Er(t)li
:.. exp [itQ] 

when we set 

(27.24) ETW - exp {-itT\E exp {-itt]. 

For the operator G(t), which determines the creation factor in (27.21), we find 

by (24.32) the expression 0(0 = ?:l(t)?..(t) or 

(27.25) &(0 - exp {t(OjF:I[1 - Et(0E]'l[E - Ei(t)]Y„ exp {itQ}. 

For the analysis of the time variation of the vacuum state we also need the 
number jj(0 — exp {=F J Tr P(t)), or rather the number 

(27.26) | ^0 | - exp {=F* Tr log 'y„(0y__(0j, 
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cf. (24.45).   We first note the relation 

'P„(0f..(O - exp [itQ\?„[l ~ EBtiD) exp {-itT)Y-'Y„ exp \UT\ 

• [1 -E,(t)E]Y-exp {-UQ} 

and make use of the trace composition rule (24.42).   We then find 

exp Tr log f?„{l)Y-(t) - exp 2 Tr log 'Y„ Y.. exp 2 <te 7V log[l - £T(0£]. 

Introducing the number j i; j given by (24.45) we finally obtain 

(27.27) | n(t) | - j » j" *xp l=Fj (Pc Tr log (1 - IT(O^I) • 

Since 1 - ££ *= (Y.JY..V1, cf. (24.39), we have 

?'r iog 'Y..Y- - 3V log r.-'V.» - -Tr log [1 - EE] 

and hence, again by virtue of the trace composition rule, we can write 

(27.28) j ,(0 | - exp {=F§ (Re Tr log [1 - EE]-X[1 - Et(i)E]}. 

Since Et(0) - E, it is clear frou this expression that 

(27.29) | i,(0) | ~ 1. 

The question arises: are there any cases in which the canonical transforma- 
tion T (connecting the modified and unmodified representations) fail* to exist 
although the transition operator f(t) (connecting unmodified representations at 
different times) does exist. We recall that a similar situation could ariae in the 
case of the infrared catastrophe treated in Part IV. In that case the field was 
myriotic with respect to the modified annihilation and creation operators BT 
while it remained ordinary with respect to the unmodified operators A" at all 
times. 

A closer analysis seems to indicate that such ajUuution cannot arise in the 
present case. For, it seems that the trace of (Re [i — EE]~l [EE — Ej(t)E] cannot 
exist if the trace of EE does not exist, although the trace of (Re [EE — Er(t)E] 
might exist. Thus it is indicated that c field which if myriotic with respect to the 
modified operator $ B' becomes myriotic with respect to A' instantaneously for t > 0 
even if it was amyriotic xoith respect to A" at the time t = C. 

Time Variation of the Vacuum State 

Suppose the state * is an unmodified vacuum et&te * — •„, at the time 
t - 0; then the nature of this state at a time t > 0 can be read off from the 
A-representation of the adjusted interaction state defined by (27.12), 

(27.30) *.(« - n(t) exp [§(*)]*„.. 

For, as remarked in connection with relation (27.70), the A (O)-representation of 
*(0 is the A*(0-representation of the state *. Hence, according to formula 
(24.26), the number | tj(t) 'is the probability that the field will be in the vacuum state 
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at the time t if it was in the vacuum stale at the time t — 0. From (27.27) we find the 
expression 

(27.31) P(N(t), 0 | N(0), 0) - | n |4 exp {=F(Re 7V log [1 - Er(t)E]~x). 

for this probability. 

Asymptotic Transition Probabilities 

It is not difficult to calculate the limit for I —»» of the probability that the 
field will be in a vacuum state at the time t if it was in such a state at the time 
t ** 0, provided the field extends over the infinite *pace. By making this assump- 
tion we exclude, for example, those cases of several interacting media described in 
Section 22. in whifh one medium is concentrated at^ a single point. We may 
conclude from this assumption that the operator Et\i)E approaches zero as 
| t| —»». For, in a representation in which the modified energy T is diagonalized, 
the kernel of the operator ET(t)E is 

exp \itv'\ f E(v', v) exp \itv]E(v , \>") dv 

if E(v', v") is the kernel of E; here we omit reference to the accessory variables 
which, together with T, form a complete system of obaervables. Since E(y', v") 
is assumed to be quadratically integrable, it is clear that the integral approaches 
zero as 111 —• wji.e., 

(27.32) Er(t)E-*0      as       |l|-*«. 

We recall that_a similar argument was used in Part III, cf. (13.45). It follows 
that log [1 — Et(t) E\ approaches zero, whence relation (27.27) give* 

(27.33) | u(0 | -• | n |" 

or 

(27.34), P(Nm , 0 | N(0), 0) = | , |\ 

In other worda, the probability that the state will eventually be a vacuum state if 
it was a vacuum state originally it the square of the probability that it will be found 
to be a modified vacuum state, cf. (24.26). 

This result is a special case of the formula 

(27.34) P(Nm , n | JV(0), no) - £ P{Nm ,n\M, m)P(M, m | AT(C), n,) 

which could be interpreted by saying tha4 the classical rule of composition of 
probabilities holds even if the number M of modified particles is not measured after 
the initial measurement of the number N of unmodified particles. A similar result 
was obtained in Part HI, cf. (15.40). The probability P(Nm, n \ M, m) in formula 
(27.34), the limit of P(N(t), n \ M, m) as I —•<» f can simply be expressed as' 

(27.35) P(Nm , n \ M, m) - P(N, m - n \ M, 0) 

•Formula (15.40) in Part III should aim have been supplemented by formula (27.34). 
The value of P(N, m — n | M, 0) there would be given by (14.56). 
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and the probability P{N, tn — n\ M,n) ia given by formula (24.26), .   We shall 
not give a proof of formulas (27.34), (27.35) although this could be done easily. 

Scattering Operator 

For single particles with the energy T one may express the Schrodinger 
state *.(0 at the time I in terms of the Schrodinger state * = *.(0) at the time 
I — 0 by the formula 

(27.36) *.(0 = exp { -ifT>*. 

Considering the operator T as a modification of the undisturbed operator 0 one 
may introduce the interaction state 

(27.37) *.(t) - £/«)* 

with 

(27.38) U(t) - exp {t'tQj exp |-t«Tj. 

Under appropriate conditions on the disturbance T — Q, see, e.g. [45], the operator 
U(t) approaches limits U. as I —* ± <°, 

(27.39) U(t) — V.       *s       / — ± •. 

The operators U+ , which may be called "half scattering operators," satisfy the 
relation, cf. [44] and [45], 

(27.40) QC7. - C/.T. 

The scattering operator, which we here denote by U„ , may then be defined as 

(27.41) U.< -U.UV; 

it evidently commutes with the undisturbed energy operator Q, 

(27.42) QU„ = U..Q. 

Of course, the scattering operator may also be defined as the limit of the "in- 
complete scattering operator" 

(27.42)     U„(t, I*) - U(i)U-\to) = exp [itQ] exp \Ui(t, - t)T\ exp [-it*Q], 

i.e. 

(27.39).. U..(t, to)-*U..      as       *-•«>, U> -» -». 

The analogue of the operator 17(0 for the fields under consideration is the 
operator f~\t) as seen from (27.13); the analogue of the operator U..(t, U>) — 
U(t)U~\to) is the operator 

(27.44) T.Mt, to) = f-\t)f{Q, 

which we also term "incomplete scattering operator."   Neither the operators 
f(t) nor the operators T~,\ (t, to) approach limits as < —*+<*>, t^ -* — ».   For 



50 X. O. FRIEDRICH8 

this reason we must be satisfied with an asymptotic description of these operators 
for large values of I.   This description will be given only for T".\ (t, fc). 
The formula 

27.45) T.M, O - exp {ito[Q)\f(t - U) exp {-ilo[Q)\, 

which can be deduced from formulas (27.10), will be useful for this purpose. 

Scattering Operator According to Yang and Feldman 

There is another possibility of introducing the scattering operator. From 
formula (27.18) v.'« set that the pseudo-operator ci{t) can be erpresced in forms 
of the pseudo-operator Ct(to) by the relation 

a(t) * H(t, <o)d«,) 
in which the linear transformation 

W, to) - *&#&*,) 

again satisfies the condition <(j(t, Q'^t, to) — 1. Relation (27.20) leads to the 
relation 

2(0- s-\t,Qa(to)Sit,to) 

in which 

s{t, o - ftof-'w. 
This operator is therefore the canonical transformation associated with the linear 
transformation <y (t, to).10 If the operator S(t, Q approached a limit as U, —• — », 
I —• oo, this limit would be the scattering operator in the sense of Yang and Feld- 
man, [5]. 

From the definition of the operator S(t, to) it is clear that the d(<o)-representa- 
tion of the state S(t, U>)$is a Q,(t)-representaiion of the Heisenberg state •. 

The connection between the operator S(t, to) and the operator f',l(t, to) intro- 
duced above is evidently given by the relation 

S(t, to) - f(to)f-Mt, to)f-l%), 

in agreement with the fact that the operator T~.'.(l, to) transforms the interaction 
state T~\to)* into the interaction state T'\t) *. 

This relation has the following consequence. Suppose we express the oper- 
ator f'.Kt, Q in terms of the operators A"(0) as 

f-:.(t, Q - /urn 
then, by virtue of (27.20), 

  S(t, to) - /(*•(«•)). 

"This connection was pointed out to me by B. Zumino. It will be the starting point for 
his forthcoming paper. 
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Therefore, in describing the effect of the operator f~.\(t, to) in terms of the A(0)- 
representers of a state we shall have described the effect of the operator S(t, U>) 
in terms of the ^(O-representers of a state. 

Aaymptotic Field Scattering Operator 

We proceed to show that for large positive values of t and —*» the operator 
^ « (*> <o) admits the description 

T-\(t, O - exp l-U*Gt-QA*) exp {\A*(?•(•-to)A*\ 
(27.46) 

• exp Mt - tjh\ exp [A* log U..A'] 

with 

(27.47) (?(-<)« exp [itQ\0 e-.p {uO} 

and 

(27.48) <?•(-«•) - exp {»toO}£/•!' U. exp {t(,Q}. 

Here U,. is the scattering operator and {/«. the half scattering operator for a 
single particle, cf. (27.39) (27.41). In deriving formula (27.46) we shall make 
two assumption;;. A*tumptum I: the field zelende over the whole tpaoe. Auumption 
II: the operator* F__ and F„* differ from the identity by a equate traceable operator. 
The latter assumption is satisfied in the problem of the boson field treated in 
Sections 22 and 26. We shall first justify formula (24.47) and then give an in- 
terpretation of it. 

Justification 

We employ the second form of the operator T„ (t, U) given by (24.16) and 
write it as 

(27.49) TM, Q - exp {[S..a to)]} exp ([*«(«, to)]} exp {[g..(<, 4)]}. 

Using the form (27.45) of T..(t, Q and observing (24.30), (24.31) we obtain 

EM, Q - exp {-itoQ\E(t - to) exp \-it,Q), 

(27.50) G..(t, Q - exp {itoQ}8(t - to) exp {t*,G|, 

exp F„(<, to) - exp \itoQ) ?~« - to) exp {-itoQ}. 

From (27.25) we then have 

G..(t, to) = exp |x*2} YZl[l - ET(t - to)E}-1 

(27.51) 
• [E -Er(t- to)]Y„exp [UQ\; 

from (27.23) we have 

exp F..(t, Q - exp {ttoQ}'K„ exp {»(< - *o)T} 
(27.52) 

• [1 -Er(t-to)E]Y-expl-itQ\, 



52 K. O. 7RIEDKICH8 

and E„(t, t0) is given by a formula similar to (27.50). 
As a consequence of Assumption I we have E-t(i)E —• 0 as before, cf. (27.32). 

Arguments similar to those used to derive (27.32) yield the relation 

(27.53) exp {[£]) exp {iM*JM~}*->*       as       |«|-»». 

More specifically this formula can be derived from the fact that 

£(*, , «,) exp \itQ"\ exp \itti"\*(a, , «,) dm(«,) dr/i(«2) -• 0     as     I i\ -» 0 
// 

for every function y(«, , 9) with ff | f(ax , *2) I' dm(s,) <//«(«,) < «. From the 
form (27.50) of the operator E,c(t) one may deduce by similar aigumsnt* the 
relation 

(27 54) exp {-IM*, to)))*-»*       as       | f | — ». 

In other words, the annihilation operators do not contribute asymptotically. 
In order to determine the asymptotic contribution from exp \[F„(t)\\ we 

make use of Assumption II and deduce from it the relations 

exp [itQ] 7__ exp { -itQ\ -» 1 
(27.55) 

exp {-UQ\'Y.. exp |t7Q} -• 1       as       | I \ -» ». 

From (27.52) we see that the operator exp F„(Q is given asymptotically by 

exp F.,(t, Ud ~ exp {i^Q} exp [i(t - to)T\ exp [-UQ] 

or, because of (24.44), by 

(27.56) exp F.,(t, U) ~ VVt(t, Q       as       * ~ », ;  

Consequently, because of (27.09), we have 

exp [[F.t(t, t*)\) - exp {-[log U.,(t, U>)\\ 

= exp {-\ Tr log U.c(t, Q] exp {-A* log r/..(f, «„M " I • 

Now, 

TV log tf.,(*, Q - -t« - (0) Tr (T - Q) = -t(< - «A 

as seen from (27.43).   Hence, because of (27.39),,, relation 

(27.57) exp {[F..«, «,)]} ~ exp |}i(f - <,)M exp \-A+ log C/.M"} 

foll0W8. 
From relation (27.51) we finally have 

G.At, Q ~ exp \itil\ YZlJ2Y.. exp |t<Q) 

- exp [itQ] YZl exp {-i(.' - to)T]E exp {-»(< - *o)T} K„ exp |»<Q|. 
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Now, Y:\EY.. - G by (24.32), (24.35); hence, by (27.55), (27.38), (27.39) and 
(27.47), (27.48) 

(27.58) GM, U>) ~ G(-t) - G,(-tn). 

In virtue of exp (9, + Sa) • exp g, exp g, and [g] - \A*GA* formula (27.46) 
follows 

Interpretation 

The operator exp [A* log U,tA~\ which occurs in formula (24.47) will, 
somewhat improperly, be called the Uquantized scattering operator. For, this 
wpeiator transforms the state •. , represented a> 

(27.60) *.-»{*.{•).! 

into the state which is represented as 

(27.60), exp {A* log U..A~\*W ~ [U'.l .. - £/;;*.(,)„}; 

thus tiie rep?esenters of this stale are obtained by letting the operator U„ act on the 
representers ^.(«i , • • • , «m) considered successively a* functions of sx , • • • , sn . 

In order to describe the nature of the operator exp \$A*G(—t)A*\, which 
also occurs in formula (24.42), we first observe that it transforms the vacuum 
state •,.. into the state represented as 

exp{M*<?(-<M'}*~. 
(27.61) 

- {(nO,/,(f^)ff(«, , «., -0 — *(«.-, , «. , -OJ. 
Here 

(27.62) gisl , s,, -t) = exp [itV) exp [itQ'^gis, , «0 

is  the  kernel   of  the   integral   operator G'(—t).    Similarly,   the   operator 
e:cp {JA *(?•(—k)A*\ transforms the vacuum state into the state represented as 

exp{M*G.(-<o)A*}*~. 
(27.63) f /Sv\ 1 

~ \inr)l\Asy)°*(Sl »•»»-«•*• *•<«•-• . *•. -Of 

with 

(27.64) gM , st , -to) = exp \itoQ"} exp {itoST'WW: e(«, , «,). 

Here e(«t, «,) is the kernel of the integral operator E'. 
Combining the effects of the operators exp{ A * log U„A~}, exp {\A*G{—t)A*} 

and exp {\A *(?•(- t)A *) we finally see from (27.59) that the state T'Kt, to) * is 
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represented aa 

*.(0 - T-.\(t, (o)*.'«o)«-» n exp {Mt - t<)h) 

•{E £ (nlnoD1'^—(^)«K«. ,«.-., -0 
(27.66) 

9*(*o.*l } «••.•!  »   — O^J r/::*..(«)..}. 
This formula can be interpreted somewhat more easily if we introduce the 
Schrftdbger states 

' (27.66) *.(0 - exp {- it A *QA~\ *.(0 

and 

(27.66), *.(0 - exp {-it*A*QA-)*M. 

The state (27.67) has the Arrepresentation 

(27.67) *.(0 «-» {exp {-iW} •••exp (-*W} *.(.).!, 

while the representation of (27.66) is derived from (27.65), (27.64), (27.62) as 

(27.68) *.(0~{*.(*).(0I, 
with 

*.(«).(0 - , exp {! i(t - tjhf Z j£ ("h.D^- 

(27.69) *(^)lK*'' *-° *"' **"•• » *"*° "» ,,(f° " 0(Qr' + Qr'"1)) 

•0*C«.. , «..-i) • • • exp [•(<• - 0(ff-*' f ^*l)}flC*—., «.o>0 

•exp {-.70-}^; ••. exp (-ftO1) #!.*»(&» • 

Here the abbreviation «o , • • • , 1, • • • , n,, • • • , n* -+- 1 has been used for the 
superscripts i^ , • • • t #, »••• f «»,,•• • » «».+i • 

The funcliona £.(*)„(<) given by (27.69) are <A« A(t)-repreaenter$ of the slate * 
since they are the <A(0)-representera of the SchrOdinger state •«(*)• 

In order to interpret formula (27.69), we suppose that n« particles were 
present in the remote past and describe the amplitude of the probability of 
finding n particles at some time in the future as being composed of amplitudes 
which correspond to the following processes:   A certain number, n — n, , of 
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particle* are spontaneously emitted at the final time, the no original particle* are 
still present but have been scattered, and the other n, — no particle* were emitted 
spontaneously at the original time and have then undergone a half-scattering procct*. 

This asymptotic description of the field scattering suffers from a certain 
incongruity. In deriving formula (27.47) we assumed that the operator T',l,(t, to) 
FAS to be applied on the interaction state •.(to) at the time to • If this state 
*«(*o) approachec a limit state as t —• » (as it usually does in single particle 
scattering problems) it would be justified to substitute this limit state for the 
state v. (to).  In the present problem, however, no such limit state exists. 

Nevertheless, in one typical situation, namely, when the disturbance Q is 
t.bsent up to the initial time and is only « vifhed on at thin tim«, .be asymptotic 
description (24.47) can be used, provided the particles composing the field in 
th« initial state are far removed from the region in which the disturbance is 
noticeable. The arguments that led to the amplified form (24.47) of the tran- 
sition amplitudes then remain valid. 

From the fact that the amplitudes of the thxee different types of particles 
occurring in formula (27.69) have different time-dependent phase factors, 
exp {—i(t — to)Oj, exp {—itQ), 1, one can deduce: At the final time thoee particle* 
are farthest removed from the disturbance region which were spontaneously emitted 
originally and then half scattered', next come the fully scattered original particles, 
to/me the unscattered spontaneously emitted particles are not separated from the 
disturbance region. 

Another consequence of the difference of these phase factors is that the 
contributions of the three types of particles to the transition probabilities are 
asymptotically independent of each other as t —•». In other words, the classical 
rule of composition of probabilities holds asymptotically. Although it could 
easily be done, we shall not calculate these asymptotic transition probabilities. 

28. A Modified Electron-Positron Field 

The general theory developed in the preceding sections is valid for fermion 
as well as boson fields, but has so far been applied only to boson fields. As an 
application to fermion fields we now consider a field of electrons and positrons in 
the sense of Dirac under the influence of external forces which cause a linear 
homogeneous transformation of the amiihiiatioii and creation operators. Electro* 
magnetic forces produced by an unquantirod electromagnetic field have this 
property. The modification of the electron-positron field caused by such forces 
includes as a special case the "po-miation of the vacuum." Our theory would 
allow us to determine this modification explicitly if the external forces satisfied 
the severe conditions under which the canonical transformation exists. These 
conditions, however, are satisfied only for special external electromagnetic fields, 
for example, for time-independent purely electric fields. Thus it is clear that the 
infinities which have been found in the investigation of the vacuum polarisation 
are not just caused by the perturbation approximation but are inherent in the 
problem. 
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Dirac Electron 

To describe the field of electrons and positrons by the process of biquanti- 
•ation we have first to describe the operators formerly associated with a single 
Dirac electron. 

Dirac's theory of the electron was developed in connection with the require- 
ments of the principle of relativity. The customary presentations of this theory 
naturally emphasize this connection; it will, however, not be apparent in the 
subsequent treatment. We shall select a definite Lorentz frame and employ a 
complete bet of obscrvables which depends on this frame. Moreover, we shall 
confine ourselves to external forces which do not depend on the time defined 
with reference to the. selected frame In Drinciple, ou- procedure could be 
carried out pJso for external forces which do depend on the time (see the remarks 
made at the end of the subsection on "Direct Method" in Section 27); for, in 
this case it should be possible to cast the results into a form which exhibits 
invariance under Lorentz transformation. We shall not attempt to pursue this 
idea in the present exposition.   (See a forthcoming paper by B. Zumino.) 

In the following we shall deviate from our custom of denoting operators by 
capital letters and their eigenvalues by corresponding lower ^ase letters. The 
basic single particle operators will be denoted by small letters while their eigen- 
values will be indicated by primes. Thus we shall come closer to the customary 
notation. 

An important feature of Dirac's electron is that the three components x, , 
z» , x, of the position x do not form a complete set of obscrvables sufficient for 
its description. Additional observables are needed. Among possible additional 
observables one should first mention the three components of the spin J hax , 
\ ho, , \ *ur, . We prefer to work with the spin signatures <rt , <rit v» and—as 
before—set h — 1.   The corresponding operators satisfy the relations 

(2*x, - 2       if       X m , 
(28.1) a.r, + a,ox = \ 

»0 if       MF 

and 

(28.2) a-,<r, -" io% ,        o&t — i<*\ ,        9%<rt = urt . 

The triple a •= (*,, o,, <r») transforms like a vector when x — (xi, xa, z,) undergoes 
a rotation. There is a second set of observables 0, , 0,, 0, which satisfy similar 
relations, but are not affected by a rotation of x. It is stipulated that the observ- 
ables o commute with & , & , & and that all of them commute with x and p. It is 
further stipulated that x together with one of the variables a and one of the 
variables 0 form a complete set. 

The energy operator proposed by Dirac can be written in the form 

#o - 0i(*iPi 4- 9,Jh + <r*Pt) + afl» 
(28.3) 

• 0i(<rp) + W*» 
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in which p — (pt , p, , p,)—instead of k—is the momentum, n the rest mass, 
and 0 a particular one among the observables 0X , 0, , 0, , say 0 •= 0} . The 
observaMe8 (Sl<r1 , 0,0,. 0,<r, are customarily denoted by a, , a, , or, . 

As the representing observables we select the position x, the observable 0, 
and—as customary—the spin signature at . Their eigenvalues, the "quantum 
variables", will be denoted by x', 0', a'—without subscript. The representer 
of a state 4- of the electron will be denoted by rf>, so that 

(28.4) * «- +(x>, a', 0'). 

The unit form is 

(28.5) (*,*)= Z f I *(*', *', &) I* dx'. 

The eigenvalues of c% and 0 are <r' •» ± 1, /3' «• ±1, and each value is assumed 
once.   Hence we may also write 

(28.4)'       * «- |*(x', 1, 1), +(x', 1, -1), *(x', -1, 1), ;(x', -1, -1)} 

and 

(*,*) - f H^(XM, DI»+ \4<x', i, -l) r 
(28.5)' J 

+1 ^<x', -i, i) |» +1 us, -i, -l) n d^. 
It is customary to use a subscript running from 1 to 4 instead of the four pairs 
(1, 1), (1, —1), (—1, 1), (—1, —1), but the latter notation seems somewhat 
more suitable for our purposes. Aside from this point our treatment is similar to 
that of Dirac [2]. 

The representation (28.4) can be so chosen that the matrix elements of 
9\ i «•» «i i 0 i Pi are 

W I <r, | *") -|(1 -••") 

(28.6) (a'I *. I O "I (*'-*") 

(28.7) 

03' I 0 10") =\{0' +0") 

03' 10,1/9") -|(1 "/J'/3"). 
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This description is, of course, equivalent to the more customary description 

/O       1\ (i 0\ /l       0\ 
(28.6)'       9X~\ I,       a,** I I,       <r.~l 1, 

/I       0\ /O       1\ 
(28.7)' 0«-l 1,       /*,«-» I J. 

Since the x-representer of the momentum is —» V,, the (z, 0, Misrepresentation 
of the state H * is 

(28.8) 

The potential V of an external force will in general be a function of x and 
of a " fix a. The canonical transformation, however, will not exist for all such 
forces, and we therefore assume a more general type of force with * potential 
whoee representer is an integral operator with a sufficiently smooth kernel 
The representer of this kernel will be denoted by V'*"'. The modified energy 
operator is then 

(28.9) H^ - H. + V 

and its representer 

(28.9)' WJi* « HI"'' + V''. 

Trantformation of the Quantum Variable* 
Instead of the position z we may introduce the momentum p by applying 

the Fourier transformation to the representer +(x', a', &). Thus p, at, 0 form a 
complete commuting system.   Instead of o% we may introduce the variable 

(28.10) r - {flxPx + *ffit + opO | p | -' - (op) | p r\ 

the component of the spin signature a in the direction cf the momentum p. It 
is immediately seen that this observable has also the eigenvalues r' « dtzl, each 
assumed once. Thus p, r, 0 form a complete commuting set. Note that the 
undisturbed energy H0 can be written in the form 

(28.11) H0 - r i p i 0, + tf 

and since r* •» 0? • 0* » lwesee that 

« - | P P + M*. 
Introducing the "absolute undisturbed energy" 

(28.12) O-IIPI' + MT* 
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and the "sign of the undisturbed energy" 

(28.13) € - H0Q-\ 

we may write H0 in the form 

(28.14) Ho - iO. 

Clearly, the eigenvalues of « are «' — ±1, each being assumed once. The 
undesirable feature that the energy may be in a state with a negative energy 
can be eliminated by considering a field composed of electrons and positrons, as 
will be discussed below. 

We may introduce the «gn of the energy • r,a observable instead of 0 and 
thus represent the state * by & fane-ion $(p', r', •'), 

(28.15) *«->*(?', T', «0 

such that 

(28.16) (*,*)» I) / | ¥j>', r't ,0 P dp'. 

The transformation of the representers <f> into the representers 4> could be 
given explicitly, cf. e.g. [43]; it is of the form 

(28.17) fix*, *', /SO - £ / Or" exp {«>'} 

•(p', •, ^ | p', r', .W, r', O dp' 
with 

*V « x(p( + *# + x# , 

but we shall not use this explicit expression. We are satisfied with writing the 
transformation (28.17) in the form 

(28.18) w,*>, 00 - E *r::.y«w, *', O 

in which the terms R'[l.$ (± 1) stand for two transformations which transform 
functions of p', r' into functions of x, 9, 0. The variable • is treated differently 
because it will play a special role later on. 

Clearly, the transformation (28.18) gives a spectral transformation of the 
undisturbed energy H0 ; for, evidently, 

(28.19) Bl""'«*t *', 00 - £ KrUWo'W, r>, «0 
•• 

with «' - [ I p' |" + MT*. 
Let us assume that a spectral transformation of the disturbed operator 

HmaA — H0 + V can also be constructed. We need not assume that the operator 
Hm94 can be obtained from H0 by a canonical transformation; we need not even 
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assume that the spectrum of Hm^ is of the same type as that of H0 . We do 
assume, however, that variables p - (p,, p,, p»), r, t of the same type as p, T, t 
exist such that HKOd is of the form 

(28.20) Hmtd - «T 

in which T is a non-negative operator commuting with «. Actually, this assump- 
tion is not a restriction; moreover, the variables p, r drop out from our final 
formulas. The assumption was made only to enable us to apply the procedure 
developed in the preceding sections without modification. 

The eigenvalues of the observables p, T, t will be denoted by p', T', «' or 
p", T", «'' without showing toe "roof explicitly. This simplification cannot 
cause confusion since the eigenvalues of the roofed and unroofed observables 
run over the Rarae spectrum. 

The (p, T, e)-representers of the state * will be denoted by £(p', -. e') and 
the transformation of these representers into ^(i, a,, 0) will be denoted by 

(28.21) *(x', c't , &') - £ #;:..,(fW, T', .'). 
t * 

This transformation need not diagonalize tha modified energy H, + */; it is suffi- 
cient that the relation 

(28.22) {H:-$ + V'^Kx, <r, , ft - £ «•::..,(«')«' I*''' W, r', «') 
• * 

holds. 
The inverse transformation of R*.\*,..$ («') will be denoted by 

so that 

(28.23) Jir»"V)«5::..,<«") - «(«' - «") - id + «'«"). 

In the following we actually need only the transformation of the (p, T, «)- 
representers into the (p, r, «)-representers. This transformation will be de- 
scribed as 

(28.24) *(p', r', .*) -  £ CT(.', «")tfp', r', «"). 

The operators C/"(±l, ±1) act on functions of p', r' and produce functions of 
the same variables.   Evidently, these operators are given by 

(28.25) [/-(€', n - R5:;*'V)«:::..i(«"). 

By l/*(e', •") we denote the complex conjugate of the operator U~(t, t"), 

(28.26) U*(t',«") = £T(c', «"). 

Since the adjoint of an operator is the conjugate of its Hermitian adjoint, we 
find 

(28.26)' 'IT(«',«") - KT\*n)&.\f.,A*') 
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(28.26)' 'U'd', e") = 'U\t', «")• 

The identities 

£ 'U'(t'", «')IT(«"', c") - *(•' - c") 

(28.27) 

can HISO be verified. 

£ £/-(«', ."')'(/*(«", «'") = «(e' - «")• 

2?kctron-Po«£ro» Field 

The process of biquantization could be performed by introducing a field 
whose states can be represented in the form 

*~ !**(p, T, «),), 

by functions $„(p, T, «)» of the n triples p, , T, , e, , • • • , p. , r. , «. .   Here we 
omit the primes since the variables carry subscripts. 

The value of 4. is the amplitude of the probability that there are n particles 
with the momenta, spin components, and energy signs p,, T, ,«,,-••, p. , T. , €. 
respectively. Instead of <t>. , one could introduce representers f„(x, o% , /3)» 
obtained from $. (p, T, «). by applying the transformation R'.l,.$(€) on $. as 
functions of each of the triples p, , r, , «, , • • • , p. , ra , c. . The corresponding 
annihilation operators would then be transformed in the same way. Denoting 
the annihilation operators associated with the (p, r, ^-representation by 
AW, T'» *') and those associated with the (x, *, , ^-representation by 
A,~i(x', a\ ff), we would have 

(28.28) A:x{x', a', &) = £ BX.JM*~W, *', O- 

The change of these operators in time would then be the same as that of the 
particle representers, 

(28.29) AW, r'f «', t) - exp { -iU'w')A:xtf, r't c') 

with a)' - (| p' |" + p']1" and 

(28.30) ^;,(r', -', 0', t) - £#.:..#(«') exp {-tWM;,(p\ r', «')• 

The latter quantity evidently satisfies the differential equation 

(28.31) »VM;,(X', a', $', t) - i/:—'A;,(x', a', 0', 0. 

Formulas for creation operators would be obtained by taking the complex con- 
jugates of these relations. 

Actually, one performs the process of biquantization in a different way. One 



62 K. O. FRIEDRICH8 

describes the field as consisting of electrons and positrons, both with the positive 
energy u - [| p I* + n*]u1 and represents the states of the field in the form 

(28.32) *~{x.(p, r,.).} 

in terms of functions x. of p,, T, ,«,, • • • , p., r,, «. whose significance, however, 
differs from that of the functions $,. The function Xi(P:»r*, 1) is the amplitude 
of tn? probability that there is one electron with momentum pt and spin com- 
ponent T, , while Xi(Pi » T» , — 1) is the probability amplitude for the presence 
of one positron with momentum — p, and spin component — T, . Similarly, 
x.(p. r, <)« is the probability of the presence of n* electrons and n_ positrons 
with momenta ±pt. • • •, ±p,, and spin components ±ri, • • • , ±r», if n* of the 
variables 11 , • •• , «, have the value +1 while n_ of these variables have the 
value — 1. Of course, the functions x»(P> *> «)• should be antitymmetric in 
(Pi > Tt , fi), • • • , (p., T. , O . 

Annihilation and creation operators of electrons will be denoted by 
Am(p', r', 1), those of positrons by A'(p', r', — 1). Note that the time variation 
of the electron operators is as before 

(28.33). A9(p', r', 1, Q - exp |=Ftto'M*(p', T', 1); 

the time variation of the positron annihilation and creation operators 

(28.33). A'(p', T', -1, 0 - exp |Tifc.'M*(p', T\ -1), 

however, agrees with the time variation of the creation and annihilation operators 
A~t of electrons with negative energy. For this reason, the positron creation 
operator A*(p', r', — 1) is substituted for the annihilation operator ATi(p', r', — 1) 
in the right members of formulas (28.28, .30), while A~(p', /', 1) is substituted 
for ATiip', T', 1). The resulting expressions are then no longei pure annihilation 
operators. Customarily, the letter ^ is used to denote these expressions but, 
since we have used this letter to denote particle representers we shall use the 
letter £, or rather 2~, for this purpose. Accordingly, we introduce the "field 
quantities" 

(28.34)- SrC**, a', 00 - £ BZ:..,tf)A-'W, r', «') 
• • 

and 

(28.35)-     S~(z', c', fi', t) - E«:::..»(«') exp [-iUW\A''(p't T',«'). 
•* 

Here we have used the notation A~ -* A~l, A* ** A*1 which we find convenient. 
The quantity S~ evidently satisfies the same differential equation as A,~ , see 

(28.30), namely 

(28.36)" tV,2-(x\ a', fi', t) - HI'"'2T(x', <r', fi', t). 
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The adjoint E* of the operator S~ is given by 

(28.34)* sv, ,', /J') - £ ifc:..*(OA'V, r',«'); 

its time continuation is governed by the complex conjugate of the differential 
equation (28.36)'. 

A Modified Electron-Positron Field 

The process of biquantization can also be carried out with respect to the 
modified energy operator IImod — H» + V. A field of modified electrons and 
positrons can be introduced accordingly. The associated annihilation and 
creation operators will be denoted by B'(p', r's «')• Field quantities S~, F* 
can be introduced by the relation 

(28.37T E Or', <r', 00 - £ ft'Ltf)*- V, A «0 

and its adjoint. The time variation of this operator is then given by formulas 
similar to (28.33); Ihey satisfy the differential equation 

(28.38)" «V,E-(z', *', 0', 0 - ffli-'2r(x', *', /?', 0- 

Undisturbed annihilation and creation operators A" may now again be 
introduced by the formula 

(28.39)-        E-(X', »', 0', t) - £ «;.;..,(«OA-V, r',«', 0 
4' 

and its conjugate; but the time variation of A" is no longer given by (28.33). 
The identification of the field quantity E~ expressed in terms of ihe modified 

and unmodified annihilation and creation operators B" and A" as given by 
formulas (28.37) and (28.39) furnishes the relationship between the two types 
of biquantization, that in terms of modified electrons and positrons and that in 
terms of unmodified ones. 

Linear Transformation of Operators A into Operators B 
We can eliminate the quantity E" by applying the inverse of the trans- 

formation R\*...t on both sides of relations (28.37)' and (28.39)". In view of 
formula (28.25) we obtain the relation 

(28.40)-        jr*V, r', «o - £ irw, •"M~i* V, T', O. 

We recall that each operator U'(t, «") transforms functions of p', / into 
functions of the same variables. Taking the adjoint of relation (28.40)" we 
obtain 

(28.40)* B'V, r', .0 - £ t/V, «'0A"V, r', .*'). 
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Both relations can be combined into 

B'(p', r\ «') - £ U"'W, t")A"-'-(p', r', «") 

or into 

Bm(p', r', *0 - £ *(1 ± .'«")</"'(«', «"M"(P', *'. «") 

(28.41) 

+ Ei(l=F •V')IT'V. «"M*(p', r', «"). 

The latter relation is a linear homogeneous transformation of annihilation and 
creatior. operator* of the form (B •» "Vot treated in Section 28. 

The coefficients V*. of the pseudo-operator *JJ are operators acting on 
functions of p', r', t'. We describe them by their matrix elements F.. («', e") 
with respect to the variable «. These matrix element; are then operators acting 
on functions of p', T'.   We find 

(.'I y_. |.") = i(i + .votr«v,«'o, 
(28.42) 

(«'l Y„ |«") - id + «votrV,«"), 

(«' I y.+ i *") « i(i - «v')cr*'(«', o, 
(28.43) 

(«'l r-|«") -id -«vo^V,«"). 
It is immediately seen that the matrix *y so given is peeudo-Hermitian. In 
order to verify that it satisfies the relations '<yy - ! and tu'<y « lwe determine 
the pseudo-operator "y from (24.9) and (28.25), (28.26)'. 

(.' | 'Y„ | t") = |(1 + «'«")'*/*'(«", «'), 
(28.42)' 

(«' | 'K.. |«") - |(1 + €'«")'C/-"(t", c'), 

(*'\'Y-. |e") -|(1 " «'«")'£/-"(«", «'), 
(28.43)' 

(«'|'K- |.'0 -Id - «'«")'£/•''(«", c'). 

Using relation (28.27) we then verify 

£ [(«' I '?•• I•'")(«"' i y-1«") + («' i 'r-1«'")(«'" i r-1«")] 
-«(«' -."), 

£ Ke' i fY„ i«'")(«'" i y_. i «'o f (.' I T- l«'")(«'" l Y„ |«")] - o 

and the other relations that constitute the relations /<y<y — <y'<y — 1. 
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As a consequence of these facts, the theory developed in the preceding 
sections is Applicable. 

Modified Vacuum State 

Among the various quantities which can be calculated from the elements of 
the matrices <y and '*y we select the operator 0 which is needed to describe the 
modified vacuum state 

•A, - nexp 1-8]*»M . 

Since, as seen from (28.42), the matrix elements of the operator F__ can be 
written in the form 

(2R.44) («' | F- ! e") - *{*' - tf')U"'(*', O, 

the matrix e^menis of its inverse are 

(28.46) («' | KIL | «") - «(«' - «")[tr'V, or1. 

Since the matrix elements of F_» can be written as 

(«' | r- |«") - *' + ocr-V, -O. 
see (28.43), those of the operator 0 - YTi K_* are 

(28.460 W\G\ .") - ^ + 0(CT' v, sOr'CT'V. -<% 

It is to be noted^that this operator does not depend on the choice of the 
artificial variables p, r; for, the operators £/*(«', c") transform (p, T)-represen- 
ters into (p, r)-repreeenters and hence the inverse [U~'W, «')]"' transforms 
(p, r)-representer8 into (p, r)-representers.  The arguments of the kernel 

(p', r', .' | G | p", r", «'0 

of the operator G are therefore the original variables associated with the un- 
disturbed field. The antisymmetry of this function is guaranteed by the general 
theory. 

Note that the kernel G vanished unless «' — —«". In other words, the 
modified vacuum elate coneiete of poire of dedrone and poeitrone. For example, 
the amplitude of the probability that there is exactly one such pair of which the 
first is an electron with momentum p, and spin component r, , and the second 
a positron with momentum — p, and spin component — r» is 

VSffri.r,,! |G|pt, rtl -1). 

Vacuum Transition Probability 

The probability that the field will be found to be in the unmodified vacuum 
state if it is known to be in the modified vacuum state—or vice versa—is, by 
(24.26), (24.46), 

Pr (N, 0 | M, 0) - | , |" - exp {* Tr log 'Y„Y..\. 
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The trace occurring here is easily calculated. From (28.43), (28.42)' we deter- 
mine the «-matrix element of the operator 'F**K__ as 

y | 'j\*r„ |e") -iE(i + «v")(i + i"vycr"V".•')#"•'(«'",«") 

or, since 1 + *'•" - «(t' - t"), 

(28.47)     («' | 'F++r__ i *") - ay - «")'tf'V, •Otr,'(«', «')• 
From this expression one derives 

y ! log 'r^y„ i«") - ;y - «") log 'try, •otr'V, «o 
whence 

TV log 'F^F- - E 7V log T/'Vy, «'}£/-(«', c') 

(28.48) 
« TVlog'CTU, 1)CT(1, 1) + 7Vlog'*r(-l, -l)tT(-l, -1). 

Consequently, 

P(tf, 0 | Af, 0) =« exp {| TV log 'IT(1, l)rr(l, 1) 
(28.49) 

+ i TV log 'ir(-i, -i)ir(-it -i)}. 
Thus the vacuum transition probability i» calculated explicitly inasmuch as the 
transformations V, 'Um are supposed to be known. 

Note that in the left member of (28.48) one should take the trace of an 
operator acting on a function of p', r', «' while in the two right members the 
traces refer to p', r' only. 

It should also be noted that the probability (28.46) is independent of the 
choice of the artificial variables p, r. For, the operators U"(*', •") transform 
(p, T)-representers into (p, r)-repre8enter8, while the operators 'U~(t', e") 
transform (p, r)-repreeenters into (p, r)-representers. It follows that the 
operators 'UmUm transform (p, fO-representere into (p, r)-representer8 and are 
independent of the choice of the variables p, r. 

It is possible to give the expression (28.49) for the vacuum transition 
probability a very concise form which involves only the signs « and < of the 
modified and unmodified energy. 

Clearly, as seen from (28.24), (28.27)', the <-matrix of the operator < is 

(«* I • I «") - E 'try, 0«"'£T(«'", «"). 
•"* 

The t-matrix of the operator i(« — •)* is therefore 

y i *(« - «)• i«") - *E 'W", #oy" - oy - nu-w, n .... 
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and consequently its trace is 

(28.50)   i Tr(t- «)* - Tr'U*(-l, 1)CT(-1, 1) + TV'LT(1, -1)CT(1, -1). 

Similarly, we find 

(«' | 1 - J(« - «)' I «") - «(«' + •") W, «')CT(«',«'), 

(.' I log [l - i(J - «)s! | •") - «(«' + «") log 'IT(«', «')£/"(«', «o 

and consequently 

7Vlogil ~i(«-«),l 
(28.51) 

- Tr log'lT(l, l)tT(l, 1) + 7Vlog 'IT(-1, -1)U'{-1, -\). 

Thus w» «ee that the vacuum transition probability (28.49) can be written in the 
form 

(28.52) P(N, 0 | M, 0) - exp {\ Tr log [1 - i(« - «)*]J. 

The fact that this expression is independent of the quantum variables 
chosen will prove useful. 

If the disturbance is small so that the transformation *y differs little from 
the identity one may approximate expression (28.52) by the expression 

(28.53) P(N, 0 | M, 0) ~ 1 - | Tr (^ - *)\ 

In fact, the condition that the trace occurring in (28.52) be finite is equivalent 
with the condition that the trace Tr (c — «)' occurring in (28.53) be finite (cf. 
the discussion in connection with (25.47), (25.49)). 

The right member of (28.53) can be evaluated by (28.50). Employing the 
kernels CT(p', T', .' | j.", T", t") and 'U*(p', r', •' | p", T", e") of CT(«', «") and 
'#*(«", «') we find, using 08.26)', 

P(N, 0 | M, 0) ~ 1 - \ £   // {| lT(p', r', 1 | p", r", 1) |' 
(28.53), •*•'" " 

+ I U-<P', r\ -1 I p", T", -1) |*} dp' dp" . 

Perturbation Approximation 

We have supposed the transformations £/*(•', «") associated with a single 
electron to be known. Insofar as this supposition is correct we may say that all 
relevant quantities such as the number | 17 | and the operat or G can be determined 
without using an approximation procedure. In most actual cases, however, 
the determination of the operators U~(t, «") themselves requires the use of an 
approximation procedure. Under favorable conditions one may employ a pertur- 
bation procedure. In typical cases it will mostly be required that the spectrum of 
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the modified energy Hm^ is the same as that of the unmodified energy H0 and 
that, moreover, the artificial variables p, r, «can be so chosen that the modified 
absolute energy u is the same function of p, T as the unmodified absolute energy 
is of p, r, i.e., 

i/» (28.64) « - «(p, ;) - (| p |» + M1) 

Let (p', r', «' | 7 | p", T", «") be the kernel of the disturbing onergy and 
U'(p', r', •' | p", T", «") the kernel of the operator IT(.', «"). Because of 
(28.54) the latter transformation gives the spectral representation of the operator 
Hmmi - Ho -f V and consequently the relation 

iVT^ r
f

> • I p", r", €") - lT(p\ /, c' j p", r", f'Ot'V 

+ /     Z     tT(p', T', «' | p'", r'", .'") 
(28.65) J '"•'" 

.fo"', •",«"'| F|p\t'l«W.' 

holds.  Since 

(28.66) ITfy, •, «> | p", r", t") - tfp* - p", r' - r", • - «") 

in first approximation, equation (28.52) becomes in first approximation 

MlTtf, T>, * | p", r", «") 
(28.67) 

- IT&, r\ < | p", r", •")«"•" + (p', r>, S | F | p", r", •")• 

A solution of this equation is 

U-&, f, J | p", r", «") - Up' - p", S -r»,J - «") 
(28.58) 

4- [(sV - «"«")•' + »* *W - •/V0](p/, /, i' ! F | p", T", f") 

For «" — — «', in particular, 

inp*, r>, t* I p", r", -o 
(28.59) 

- «V + •/')" V, r*. s* j F j p", r", -f0- 

Instead of the factor »'T the factor — t» could just as well have been chosen on the 
right hand side of (28.58).  In either case the operator U is unitary in first ap- 
proximation, cf. [2] and [44]. However, the sign of this factor is irrelevant in the 
present context since it does not contribute to the right member of (28.59). 

The expression Tr (« — •)' which occurs in the approximate expression 
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(28.53) for the vacuum transition probability can now, by (28.54), be approxi- 
mately expressed as 

1 - Pr (N, 0 | M, 0) ~ i  £   // {| p', r',1 | V | p", r", -1) |« 

(28.60) 
+ | (p', r'f -1 | F | p", r", 1) |»}(«' + w")"* rfp' rfp". 

This formula was found by H. £. Moses [51] who applied a perturbation pro- 
cedure directly to the field equations. In the following we present a slight 
modi5cation of his arguments. 

It is possible to write expression (28.50) in a form which does not depend 
on the choice of r, « or *•. , 8 as quantum variables. To this end we introduce 
the operator 

(28.61) W - i(l + «)V(1 - •) + J(l - «)F(1 + .) - \V - hV: 

Its (p, r, «)-kernel is 

(28.62) (p', •, < | W | p", r", «") - «(• + s")(p', A «' | V | p", r", «"), 

and hence we have 

1 - Pr (AT, 0 | M, 0) 

(28.63) .   .. 
~ 5 //  E    E   I <P', '', .' | W | p", r", .") |* («' + «")- (# 4p". 

Next we assign to every operator A acting on states • of single particles its 
"p-kernel"; i.e. the operator (p' | A \ p") which acts on "spin states" represented 
by functions of «%, 0 or r, « and whose (p, r, <)- and (p, <r,, flHepresenters are 
(p', T', t' j AI p", r", t") and (p't <,',,?) A \p", <rj', 0") respectively. The opera- 
tor with the kernel (p", T", ?' | A | p', 7] V) wUl be denoted by (p' | A» | p"). 

Observing that the (p, r, «)-reprfiSer»ter of the operator (p" | W \ pO * 
(p* | IT | p") is £ £ (p', r'", «'" | JP | p", r', .0(p', r'", •'" | W \ p", r", .") 

we see that we may write 

£   Z \W, r',*' \W \p", T",<") ? - Tr(p" \W* \pW \W \p") 
T'T"    «'t* 

and hence formula (28.63) becomes 

1 - P(N, 0\M,0) 
(28.64) 
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The trace occurring here refers to the variables r, <; but, being independent of 
the choice of the variables, it could just as well be evaluated by employing the 
variables at, 0. 

This evaluation will be facilitated by using the operators (p' | «I ?")• From 
the definition (28.13) of < and Q, and the definition (28.3) of H0 we see that the 
operator (p' | « I v") can be written in the form 

(28.66) (p' | « | p") « «(p' - p")«(p0 

where c(p') is an operator acting on spin states and depending on p'; specifically 

(28.66) cW) - [«']-' [fl.Orp') + j*]. 

Using this operator we may derive from (28.61) the expression 

(28.67) 2(j/\W\ p") - <p' | F j p") - *{p')(p' | V | p'W). 

Since [t(p')l" — 1, we have 

4(p" | W* | p')(p' | IT | p") - (p" | V* | p')(p' I V | p") 

- .ryoCp" I v* | P')«(P')(P' I ^ I P") - (P" I v* | P')«(PO(P' I F | P")«(P'0 

+ «(P'0(P" I v I pO(p' I F | p"W) 

whence, since Tr AB — Tr J9X, the formula 

2Tr(j>" \W\ p')(p' \ W j p") 
(28.68) 

- Tr (p" | V | p')(p' I F | p") - TV <<p")(p" I F* | p')«(p')(p' I F | p") 

results; it may l*» used in (28.64). 
Expression (28.68) can be greatly simplified in the important, case in 

which the operator V is constant as regards spin states so that V*" ' — V* acts 
on functions +(p, ot , p) only insofar as they depend on p. In this case the 
operator «(p') commutes with the operator (p' | V i p") and hence we have 

2 TV (p" | W | pO(p' | TF | p") 
(28.69) 

- [TV 1 - TV.(p")«(pOKp" I V | pO(p' I F | p"). 

The trace of the identity as regards spin states is evidently 

(28.70) TV 1 - 4. 

The trace of «(p")<(p') is easily evaluated from (28.66) combined with the 
commutation relations (28.1), 

(28.71) TV *(p")t(p') = 4(«V)~ W + M*]. 
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Hence 

J TV [1 - «(p")€(p')) - 1 - (wVTVl/' + M*) 

- («'»")'W - PV " M*l 
and formula (28.64) becomes 

1 - P(N, 0 | M, 0) 
(28.72) 

- Jj I (P' I V | p") |" [«'«" - p'p" - *•](«'«")" V + «")- dp' dp". 

Of particular interest in the special case where the disturbing energy V u> an 
external potential which is a function of the position z. Then the p-kenel of V 
is a function of p' — p", 

(p'l V|p")- V(p"-p0. 
Moses observed [49] that in this case the right member of formula (28.72) is 
finite provided the function V(p) dies out sufficiently strongly as | p | —• ». In 
fact, it is sufficient that \ V(p) \ be bounded and integrable. To see this we may 
introduce p — p" — p' and p' as new variables and set 

(28.73) K(pO - («')* / I V$) \' [«V - p'p" - M'K-VT V + «")"* <$, 

so that 

(28.74) 1 - P(N, 0 | M, 0) - f K(pO(«T4 dp'. 

For large values of | p' | we have 

«v - py - M
f ~ i i P' i- (i P' n P i' - (P'P)*J. 

Here the right member remains bounded and the same is, of course, true of 
(wO'fa")"'^ + «")"*. Consequently, K(p') is bounded for large values of 
| p' | and hence the integral in (28.74) in unite. 

Tbir. integral gives only the contribution of second order to the probability 
P(N, 0 | If, 0). A closer analysis would show that the complete probability 
itself is also finite provided the disturbance V it email enough. Ir this case then 
the cayumical tran tforniaticn T exist*. It is true that the expectation values of 
certain observables—such as the charge density at any point—are inhnite in the 
vacuum state. One must expect such occurrences whenever the operators which 
correspond to the observables are unbounded. Of course, such occurrences alone 
do not invalidate the theory. 

The situation is quite different if the disturbance V is not constant as 
regards spin states, for example in case 

V - (aA) - fit{,A) 
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where A » (.4, , A, , At\ is the vector potential of an external electromagnetic 
field.   In this case relation (28.68) leads to 

i Tr (p" | W* | p0(7>' I W | p") - (</«")" W + P'P" + M'] 

provided A it divergence-free, pA - 0, which tee may auume. The arguments 
that led to the boundedneas of the expression K(j>') now break down and, con- 
sequently, the right member of formula (28.04) is infinite. It would seem that 
one should assume the field to be myriotic in this case and it may perhaps be that 
one could then rederive in a mathematically satisfactory way some of the finite 
results that have been obtained by using—in intermediate steps—certain terms 
which arc actually infinite. 
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